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ABSTRACT This article revises informed independent vector extraction (iIVE) as a framework for connect-
ing model-based blind source extraction (BSE) with deep learning. We introduce the contrast function for
iIVE, which is derived by extending IVE with beamforming-based constraints, enabling an interpretable use
of reference signals. We also show that structured mixing models implementing physical knowledge can be
integrated, which is demonstrated by two far-field models. With the contrast functions, rapidly converging
second-order algorithms are developed, whose performance is first verified through simulations. In the ex-
perimental part, we refine iIVE by training models containing unrolled iterations of the developed algorithm.
The resulting structures achieve performance comparable to state-of-the-art networks while requiring two
orders of magnitude fewer trainable parameters and exhibiting strong generalization to unseen conditions.

INDEX TERMS Blind source separation, blind source extraction, independent component analysis, indepen-
dent vector analysis, speaker extraction.

I. INTRODUCTION
A. MOTIVATION
Extracting a signal of interest (SOI) from multichannel noisy
observations has been a fundamental task in signal process-
ing and machine learning. The key to solving this problem
is information directly about or related to the SOI. Various
approaches attempt to capture this information through math-
ematical assumptions and training. It is very important to have
methods whose requirements for applicability in different sit-
uations are as unrestrictive as possible.

Therefore, the defining philosophy of Blind Signal Extrac-
tion (BSE) has been that methods should only use information
contained in the observed data [1]. In contrast, modern
deep learning (DL) methods assume a sufficient number of
examples to train nonlinear systems that are capable of solv-
ing the task in general situations. While BSE is limited
by the available data and therefore in accuracy and uncer-
tainty, DL methods are difficult to interpret, have unclear

generalizability to unseen scenarios, and often face high com-
putational demands. The current trend is therefore moving
towards combining the advantages of these two and other
approaches.

This article focuses on informed independent vector extrac-
tion (iIVE) as a suitable means of combining BSE, physical
models, and DL. We review the theoretical basis for deriving
the contrast function for iIVE, starting from IVE and intro-
ducing beamforming-based parameter constraints that allow
an interpretable incorporation of reference signals. We show
that the contrast function can also be combined with struc-
tured mixing models implementing physical knowledge and
derive rapidly converging second-order algorithms. Attention
is paid to the experimental part, where, in addition to ver-
ifying the algorithms by simulations, we optimize modules
for obtaining side information through an unrolled algorithm.
From the foundations of iIVE, we thus move towards hybrid
architectures that can combine three sources of information:
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physical knowledge (structured mixing models), information-
theoretical principles (independence-based IVE), and side
information obtained by a trained part.

B. BACKGROUND
The most successful methods for Blind Source Separation
(BSS)1 include Independent Component Analysis (ICA) and
Nonnegative Matrix Factorization (NMF) [3], [4]. Later,
extensions appeared for the joint separation of multiple mix-
tures: Independent Vector Analysis (IVA) and Multichannel
NMF [5], [6]. This work is focused on methods following
ICA.

BSS generally aims to retrieve all original signals contained
in the observed mixture, while BSE is a special case of BSS
in this respect, where we want to extract only the SOI [7],
a group of signals [8], or their subspace [9]. Independent
Component Extraction (ICE) and IVE are BSE variants of
ICA and IVA, respectively, where the principle for identifying
the SOI is its statistical independence from other signals in the
mixture [10].

The uncertainty of the order of the original signals and
their scale is a natural property of BSS and, in general, of
all problems where information about target outputs is miss-
ing [11]. The uncertainties give rise to problems that are
crucial to solve in practical deployments, such as the per-
mutation problem [12], the discontinuity problem [13], and
scaling ambiguity [14]. For example, to apply BSE in speaker
extraction, we need to identify which signals belong to the
target speaker, noise, and the other speakers.

For purely blind methods (BSS, BSE), it is necessary to
assume that additional information is available and, depending
on its type, define a strategy for using it. This is what informed
methods [15], also called semi-blind [16] or guided [17], [18],
attempt to do. Given the various forms of additive information
and applications, these methods constitute a diverse set of
approaches that may be similar or even equivalent, but may
also be useful only for specific tasks. To name some, there
are methods trying to control convergence through constraints
imposed on parameters [19], [20], [21], [22] or directly on
the extracted signal [23], [24]. Bayesian methods exploiting
a priori probabilistic models can lead to similar solutions [25].
Incorporation of a reference featuring dependency with the
SOI has been considered, e.g., in [17], [26], [27], [28].

With the advent of DL, attention has focused on training
deep networks to solve separation and extraction tasks. The
most widely used multichannel approaches aim to estimate
time-frequency masks indicating the activity of (target) sig-
nals, which are then used to calculate covariance matrices
and beamformers [29], [30]. Due to poor generalizability to
unseen scenarios and weak interpretability, ways to combine

1In this article, we use the term “blind” to refer to methods that use only
observed data as input, and no training data. This definition is closer to the
original idea from the 1990s [1] and differs from the recent trend, which
includes a group of trained models [2]. The reason for this is the distinction
between purely mathematical and data-driven models, combinations of which
give rise to hybrid models, which are the focus of this article.

DNN with knowledge from beamforming and blind signal
separation were soon sought. In the field of target speaker
extraction (TSE), the main problem addressed was how to
identify the target person. For this purpose, it is possible
to use embeddings derived from reference utterances of a
specific person (enrollment) [31]. Spatial information [32] or
even multimodal information [33] can also be used. A recent
study compares the effectiveness of spatial information with
embeddings [34]. Other recent approaches include generative
models, such as diffusion architectures [35].

The idea that informed algorithms can appropriately com-
bine BSS and DL is becoming increasingly common [27],
[36]. The main focus is on optimizing source models in
methods derived from IVA/IVE [37], [38], [39]. For example,
DNN-based source power spectra estimation is considered
in [40], [41]. A trainable surrogate function in auxiliary
function-based IVA was proposed in [42], and its combination
with the original Laplacean model from [43] was proposed
in [44]. The trained source model was combined with geo-
metrical constraints in [45]. An end-to-end automatic speech
recognition system endowed by a speech separation method
with a neural source model was considered in [46]. There
are countless ways in which BSS and DL methods can be
combined, so further work on this topic can be expected in
the near future.

C. CONTRIBUTION
This article focuses on iIVE and its applicability in trainable
hybrid models. The contribution has four main parts. First, we
revise iIVE by introducing a suitable contrast function that
involves parameter constraints employing reference signals.
Second, we show that the contrast function can also be used
with structured mixing models that reflect physical knowl-
edge. Third, we show that the contrast functions can be used
to develop second-order algorithms similar to the well-known
FastICA [47], specifically, for the basic unstructured and two
structured mixing models. Fourth, we verify the algorithms
on simulated data and evaluate their involvement in showcase
hybrid models for TSE.

The source extraction problem is formulated in Section II,
where we introduce the mixing and de-mixing model parame-
terizations, including two structured models for linear sensor
arrays. In Section III, we take the likelihood function for IVE
and modify it by constraining the mixing and de-mixing pa-
rameters. The constraint is a function of the reference signals
and is intuitively related to the minimum variance distor-
tionless (MVDR) beamformer, which is well-known in array
processing theory [48]. Based on this, we also define the con-
trast functions for two structured mixing models. The models
assume linear sensor arrays and non-reflective environments,
which are implemented in nonlinear parameterizations of the
mixing vector with a smaller number of parameters than in the
unstructured model.

In Section IV, the gradient and Hessian matrix of the con-
trast function of the unstructured model are derived in closed
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form. We show that they provide useful tools for develop-
ing second-order informed FastICA-like algorithms. For the
unstructured model, we obtain a method that is very similar
to the proven algorithms from [49], [50]. The framework
presented here provides new insight into the necessity of
using constraints that ensure subspace orthogonality. More-
over, we confirm the validity of the framework by deriving
new informed algorithms also for the structured models. One
of these algorithms corresponds to a novel informed variant of
the single-parameter algorithm from [51]. We verify the algo-
rithms by simulations in Section V, by which the relevance of
the proposed contrast functions for iIVE is confirmed.

In the experimental Section VI, we verify the applicability
of methods in trainable hybrid models for TSE. Reverber-
ant mixtures of speakers are considered such that the target
speaker position is within a defined sector of the room. First,
a noise-only activity detector (NAD) is realized by a small-
scale DNN that is pre-trained on a training subset. Then, the
proposed algorithms are tested when the reference signal is
obtained as the NAD output. Secondly, the pre-trained NAD
is optimized in a hybrid architecture, where NAD is connected
as a reference input to five iterations of the iIVE algorithm. In
further experiments, we change the parameters of mixtures,
such as reverberation time and room dimensions, and evaluate
the ability of methods to generalize to unseen scenarios and
compare their performance with state-of-the-art TSE models.

Codes of methods, simulations, and experiments are pub-
licly available.2

C. NOMENCLATURE
Plain, bold, and bold capital letters denote scalars, vectors,
and matrices, respectively. Upper index ·T , ·H , or ·∗ denotes,
respectively, transposition, conjugate transpose, or complex
conjugate. The Matlab convention for matrix/vector concate-
nation will be used, e.g., [1; g] = [1, gT ]T . We will consider
complex-valued signals and parameters.

II. PROBLEM FORMULATION
A. OBSERVED DATA
Let us consider K signal mixtures observed by multiple sen-
sors. The kth mixture is assumed to obey the linear mixing
model

xk (n) = aksk (n)+ yk (n), (1)

where n is the sample index n = 1, . . . , N ; xk (n) is the d × 1
vector of observed signals in the kth mixture, and sk (n) and
yk (n) denote, respectively, the SOI and the other signals; ak

is the d × 1 mixing vector whose elements correspond to
weights with which sk (n) is observed in the mixture. The goal
is to retrieve sk (n) from each mixture.

As an example, k may correspond to a frequency in Short-
term Fourier Transform (STFT) of audio time-domain signals
recorded by d microphones, where ak corresponds to acoustic
or relative transfer functions of the signal paths between the

2https://github.com/ASAP-Group/hybridIVE.git

target speaker and the microphones [52]. Similarly, k can
be the index of a dataset, snapshot, or subject in a multi-
subject experiment with biomedical data [53]. If K > 1, we
are talking about joint extraction, where multiple mixtures are
processed simultaneously.

There are indeterminacies inherent to the problem: ak and
sk (n) can have arbitrary scale as (δak )( 1

δ
sk (n)) = aksk (n) for

any δ �= 0, which is referred to as the scaling ambiguity. Also,
the role of sk (n) can be played by any other signal in the
mixture that satisfies the properties by which we determine
the SOI; this is referred to as the SOI uncertainty; see also
Section II.B in [10].

In addition to the mixtures, we assume that scalar reference
signals rk (n) are available, which might carry side information
about the SOI; in case they do not depend on k, we denote
the sole reference signal by r(n). The primary purpose of the
reference signals is to deal with the SOI uncertainty. They
allow for the inclusion of various types of supplementary
information (e.g., voice/noise activity detection, speaker ID,
video, spatial information, etc.).

B. MIXING MODEL PARAMETERIZATION
Let wk be the separating vector3 that should extract the SOI
from the kth mixture as sk (n) = wH

k xk (n). The existence of
the ideal separating vector such that extracts sk (n) without any
distortion and residual interference is not guaranteed by (1)
in general. We now introduce assumptions that guarantee the
existence of the ideal wk , under which the model is referred to
as determined.

Assume that yk (n) only span a (d − 1)-dimensional sub-
space of so-called background signals, which will be denoted
by a (d − 1)× 1 vector zk (n). It means that a (d − 1)× d
blocking matrix B(ak ) (a function of ak) exists such that
the background signals can be obtained through zk (n) =
B(ak )xk (n). Let ak be divided as ak = [γk; gk] and let us
define B(ak ) = [gk − γkId−1]. It holds that B(ak )ak = 0.
Thus, B(ak ) is a blocking matrix and the background signals
can be defined as zk (n) = B(ak )xk (n) = B(ak )yk (n).

Now, the de-mixing model (the inverse of the mixing
model) can be described by a non-singular square de-mixing
matrix Wk where it holds that

Wkxk (n) =
[

wH
k

B(ak )

]
xk (n) =

[
sk (n)

zk (n)

]
. (2)

In hindsight, the mixing system (1) can be therefore described
by a mixing matrix Ak =W−1

k , where

xk (n) = Ak

[
sk (n)

zk (n)

]
. (3)

3In array processing theory, the separating vector wk would be called a
beamformer.
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By dividing the separating vector as wk = [βk;hk], we can
express the analytic form of Ak =W−1

k

Ak =
[
β∗k hH

k

gk −γkId−1

]−1

=
[
γk hH

k

gk
1
γk

(gkhH
k − Id−1)

]
, (4)

which is valid (the reader can verify that WkAk = Id ) under
the distortionless condition that

wH
k ak = β∗k γk + hH

k gk = 1. (5)

To summarize, we assume that, besides (1), the observed
data also obey (3) where Ak is square and is parametrized
by the parametric vectors ak and wk according to (4), and ak

and wk satisfy (5). The source extraction problem can now be
formulated to find wk . However, in the blind and semi-blind
settings considered in this paper, we will see that this also
implies the finding of ak .

The mixing models with the square non-singular mixing
matrix has been referred to as determined [1], [37], [54]. It
enables us to apply the classical statistical estimation as the
true values of ak and wk are assumed to exist. This assumption
does not necessarily mean a limitation in practice. In the
experimental section, we also consider situations where the
mixtures do not obey the model perfectly.

In this article, we will specifically address the following
special cases.

1) UNSTRUCTURED MIXING MODEL
As a basis for further methods, we will consider the conven-
tional mixing model where no additional structure is assumed
for the parametric vectors ak and wk .

2) PHASE-SHIFT MIXING MODEL
Of particular interest will be the case where the mixing vector
is structured according to

ak (λk ) =
[
1 eiλkv2,k . . . eiλkvd,k

]T
, (6)

where λk are real-valued, and v j,k , j = 2, . . . , d , are known
weights collected in the vectors vk = [0, v2,k, . . . , vd,k]T , k =
1, . . . , K ; i denotes the imaginary unit.

When the vectors vk are real-valued, the model describes
situations where the contribution of the signal sk (n) is phase-
shifted on input channels while the magnitude is the same. A
typical case is the impact of a plane wave on a linear array of
sensors at an angle whose cosine is given by λk . The phase
shifts are then given by

vm,k = 2π fs

ck

k − 1

2(K − 1)
(m− 1)dm, (7)

where fs is the sampling frequency, 2(K − 1) is the window
length of the STFT, ck is the speed of signal propagation,
and dm is the distance of the mth sensor from the (m− 1)th
sensor [55].

3) FAR-FIELD MIXING MODEL
In the previous model, the angle at which the planar wave
is traveling may be frequency-dependent. The special case
considered here is when

λ = λ1 = · · · = λK , (8)

that is when the angle is the same for all frequencies. In acous-
tics, this is the case when the sound source (e.g. a speaker)
is a point source and is sufficiently distant from the micro-
phone array, and the environment is free of any reflections
(free-field).

III. CONTRAST FUNCTIONS
This section introduces contrast functions that enable the
identification of ak and wk . Contrast functions are derived
based on the maximum likelihood principle, and parameter
constraints play a special role here. In particular, the contrasts
for the semi-blind estimation are derived through constraints
employing the reference signals.

A. STATISTICAL MODEL OF DATA
Following the basic statistical model of the IVE, each signal
is modeled as a sequence of identically and independently
distributed zero-mean random variables [5], [10], [56]. We
will denote the random variables using the same symbol as
the corresponding samples but without the argument n. For
instance, sk will represent sk (n), n = 1, . . . , N .

The key assumption in IVE is that the SOI sk and the back-
ground signals zk are mutually independent. The reference
signals rk are assumed to show dependencies with sk but are
independent of the background signals. Another key feature
in IVE is that possible dependencies among s1, . . . , sK , i.e.
of the SOIs in the K mixtures, are taken into account. Let
s = [s1, . . . , sK ]T , which is referred to as the SOI vector com-
ponent. The dependencies are implemented through a joint
non-Gaussian pdf p(s) = p(s1, . . . , sK ), which need not be
just the product of marginal pdfs of s1, . . . , sK [5].

The background signals zk are assumed to be zero-mean
circular Gaussian having an unknown covariance matrix de-
noted by Ċzk ; zk1 and zk2 are assumed uncorrelated for k1 �=
k2. These assumptions mean that we neglect higher-order
statistics and inter-mixture dependencies of the background
signals, which often leads to a statistical suboptimality [57].
Nevertheless, this is worthwhile in terms of simplification;
see, e.g., discussions in [13].

A. CONVENTIONS
From now on, we will distinguish the true values of signals
and parameters by the dot accent. For example, ȧk and ẇk will,
respectively, denote the true mixing and separating vectors.
Similarly, ṡk and żk denote the true SOI and the background
signals, respectively. For simplicity, we will denote sample-
based averages by the expectation operator E[·], the value of
which corresponds to the true expectation when N →+∞.
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B. CONTRASTS FOR BLIND ESTIMATION
The contrast function for the blind estimation of ak and wk ,
k = 1, . . . , K , considering the unstructured mixing model is
given by4

C (w1, a1, . . . , wK , aK ) = E
[
log f (s)

]− K∑
k=1

log σ 2
k

−
K∑

k=1

E
[
zH

k C−1
zk

zk

]
+ (d − 2)

K∑
k=1

log |γk|2, (9)

where σ 2
k denotes the estimated variance of sk , s =

[ s1
σ1

, . . . ,
sK
σK

]T , and f (·) is a suitable model non-Gaussian pdf
of normalized random variables; f (·) is needed to replace the
unknown true pdf of s.

In the case of the phase-shift model (6), the contrast func-
tion is readily given by

Cw,λ (w1, λ1, . . . , wK , λK ) =
C (w1, a1(λ1), . . . , wK , aK (λK )) (10)

and, for the far-field model (8), it is given by

Cw,λ (w1, . . . , wK , λ) = C (w1, a1(λ), . . . , wK , aK (λ)) .

(11)

C. CONSTRAINTS
The parametric vectors ak and wk are not completely free
variables due to the distortionless constraint (5). However,
this link is often shown to be insufficient due to spurious
local extremes of the contrast functions. It thus turns out to
be advantageous to introduce stronger constraints, also for the
sake of reducing the number of free variables.

1) MPDR
The so-called orthogonal constraint (OC) requires that the
subspace generated by the current estimate of sk is orthog-
onal to that of zk . The condition means that E[zks∗k ] =
B(ak )Cxk wk = 0, where Cxk is the sample covariance matrix
Cxk = E[xxH ]. The OC is consistent with the model since
E[żk ṡ∗k ] is zero when N →+∞ because of the independence
of ṡk and żk .

The OC is given by [10]

wOC,k (ak ) = C−1
xk

ak

aH
k C−1

xk
ak
= σ 2

k C−1
xk

ak, (12)

when wk is expressed as the dependent variable on ak . Con-
versely,

aOC,k (wk ) = Cxk wk

wH
k Cxk wk

= σ−2
k Cxk wk (13)

when ak is treated as the dependent variable.

4For a detailed justification of the contrast function, we refer the reader to
Section III.B in [13] where the considered model coincides with the one here
when T = 1 (static mixing model).

Note that (12) has the same analytic form as the min-
imum power distortionless beamformer (MPDR). To ver-
ify the orthogonality, note that B(δa)a = 0 for any vec-
tor a and scalar δ. Hence, E[zks∗k ] = B(aOC,k (wk ))Cxk wk =
B(ak )Cxk wOC,k = 0. Similarly, it is easy to verify that
wOC,k (ak )H ak = wH

k aOC,k (wk ) = 1, which means that the
couple wk and aOC,k (wk ) as well as wOC,k (ak ) and ak satisfy
the distortionless condition. For N →+∞, wOC,k (ȧk ) = ẇk

as well as aOC,k (ẇk ) = ȧk .
The optimization of (9) under the OC has been widely

studied and leads to the well-known ICE/IVE algorithms; see,
e.g., [8], [10], [47].

2) MVDR
MPDR is known to be sensitive to the estimation errors in Cxk

and ak . For example, wOC,k (ak ) can be significantly different
from ẇk if ak deviates too much from ȧk and/or when the
estimation error in Cxk is large.

An alternative to MPDR is

wMVDR,k (ak ) = C−1
yk

ak

aH
k C−1

yk
ak

, (14)

where Cyk is the sample covariance matrix of yk . For N →
+∞, this is known as the minimum variance distortionless
beamformer (MVDR). MVDR is less sensitive to the es-
timation error in ak than MPDR. However, it requires the
knowledge of Cyk , which is hardly available in real situations,
let alone in a blind scenario.

3) APPROXIMATE MVDR
In [49], we tried for the first time to replace the OC with an
approximate MVDR where the unknown Cyk is replaced by a
weighted covariance matrix

Cαk = E
[
αkxkxH

k

]
. (15)

The corresponding constraint is

wα,k (ak ) =
C−1

αk
ak

aH
k C−1

αk
ak
= σ 2

α,kC−1
αk

ak, (16)

where αk is a function of the reference signal rk , re-
ferred to as the weighting function; σ 2

α,k = (aH
k C−1

αk
ak )−1 =

wH
α,kCαk

wα,k . In general, the goal is to make Ĉαk as close to
Cyk as possible. For example, αk can be chosen as an indicator
of the activity of the SOI. The consistency of (16) proves the
following lemma.

Lemma 1: The separating vector estimate (16) is consistent
in the sense that, for N →+∞, wα,k (ȧk ) = ẇk .

Proof: See Appendix A. �

D. CONSTRAINT AND CONTRASTS FOR SEMI-BLIND
ESTIMATION
In fact, (16) does not guarantee the orthogonality, i.e.,
B(ak )Cxk wα,k (ak ) �= 0 in general. We found that this turns out
to be a problem in the algorithm development. Therefore, our
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proposal in this paper is to combine the two constraints (12)
and (16) by substituting each ak and wk according to

ak ← aαOC,k (ak ) = aOC,k
(
wα,k (ak )

) = σ 2
α,k

ς2
k

Rkak, (17)

wk ← wα,k (ak ), (18)

Since both substitutions are functions of ak , they represent a
constraint alternative to (16). Here, we have introduced (for
simplicity, we omit the arguments of aαOC,k and wα,k unless
necessary)

Rk = Cxk C−1
αk

, (19)

ς2
k = wH

α,kCxk wα,k = σ 4
α,kaH

k C−1
αk

Cxk C−1
αk

ak, (20)

where ς2
k corresponds to the sample variance of sk = wH

α,kxk .
The orthogonality and distortionless condition follow,

respectively, from that E[zks∗k ] = B
(
aαOC,k

)
Cxk wα,k =

σ 2
α,kB

(
σ 2

α,k

ς2
k

Rkak

)
Rkak = 0 and

wH
α,kaαOC,k = ς−2

k aH
k C−1

αk
Rkak = 1.

Lemma 2: For N →+∞, aαOC,k (ȧk ) = ȧk .
Proof: By Lemma 1, ς̇2

k = wα,k (ȧk )H Cxk wα,k (ȧk ) =
ẇH

k Cxk ẇk = σ̇ 2
k . Hence,

aαOC,k (ȧk ) = σ̇ 2
α,k

σ̇ 2
k

Cxk C−1
α,k ȧk = σ̇−2

k Cxk ẇk = ȧk . (21)

�
New contrast functions for semi-blind estimation are ob-

tained through employing (17)-(18) in (9)-(11). For the basic
unstructured mixing model, the contrast function, which is a
function of a1, . . . , aK , will be

Ca (a1, . . . , aK )

= C(wα,1, aαOC,1, . . . , wα,K , aαOC,K
)
. (22)

Hence, for the phase-shift model, the contrast is

Cλ (λ1, . . . , λK ) = Ca (a1(λ1), . . . , aK (λK )) , (23)

and for the far-field model,

Cλ (λ) = Ca (a1(λ), . . . , aK (λ)) , (24)

which is a function of a single real-valued parameter. It is
worth noting here that (23) and (24) offer alternatives to reg-
ularized contrasts used, e.g., in [21], [22]. While the former
considers the specific structure of mixing parameters, the lat-
ter only enforces proximity to these structures.

IV. ALGORITHMS
We now derive algorithms based on optimizing the above
contrast functions. We start with a detailed computation of the
gradient and Hessian matrices of the contrast function (22) for
the unstructured model. The results will be important for the
further development of algorithms.

A. DERIVATIVES FOR UNSTRUCTURED MODEL
The gradient and the Hessian matrices of (22) and the assump-
tions under which they are computed are formulated in the
following two statements.

Statement 1: Let the unknown score functions − ∂ log f (s)
∂sk

,

k = 1, . . . , K , be replaced by ν−1
k φk (s), where φk (s) are suit-

able (scalar) nonlinear functions5, s = [ s1
ς1

, . . . ,
sK
ςK

]T , and

νk = E

[
φk (s)

sk

ςk

]
. (25)

Let the unknown covariance matrix Ċzk be replaced by the
sample-based covariance of the current estimate of zk . Then,
the gradient of (22) reads

�k = ∂Ca

∂a∗k
= σ 2

α,kC−1
αk

(
aαOC,k (ak )− ν−1

k E

[
φk (s) · xk

ςk

])
.

(26)
Proof: See Appendix B. �
Statement 2: Let, for all k = 1, . . . , K , ak = ȧk , N →
+∞, and νk be treated as constants. Define

ξk = E

[
|sk |2
σ 2

k

∂φk (s)
∂s∗k

∣∣∣
s=s

]
, (27)

ηk = E

[
s2
k

σ 2
k

∂φk (s)
∂sk

∣∣∣
s=s

]
, (28)

ρk = E
[

∂φk (s)
∂s∗k

∣∣∣
s=s

]
, (29)

ξ�,k = E
[

s∗
�

σ�

sk
σk

∂φk (s)
∂s∗

�

∣∣∣
s=s

]
, (30)

η�,k = E
[

s�
σ�

sk
σk

∂φk (s)
∂s�

∣∣∣
s=s

]
. (31)

and assume that the nonlinearities φk (·) are chosen such that

ξk − ηk − νk = 0, (32)

and

ξ�,k = η�,k . (33)

Then,

∂�T
k

∂ak
= ν̇k − ρ̇k

ν̇k

(
σ̇ 4

α,k

σ̇ 2
k

Ċ−∗αk
Ċ∗xk

Ċ−∗αk
− ẇ∗k ẇT

k

)
, (34)

∂�H
k

∂a�

= 0, � = 1, . . . , K, (35)

∂�T
k

∂a�

= 0, � �= k. (36)

Proof: See Appendix C. �
We will now derive second-order algorithms based on the

Newton-Raphson (NR) scheme for complex-valued signals
and parameters; see (28) in [58]. These methods involve the
inversion of the Hessian matrix. An important simplification

5The scaling of the nonlinear functions is needed so that the gradient of
(22) is zero when N = +∞ and ak = ȧk ; see, e.g., Section III.A in [10].
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here brings the assumption of Section III-A that the back-
ground signals are circular: Together with condition (32), it
causes (35) to be equal to zero for � = k. For K > 1, (33)
plays an important role, due to which the Hessian matrix is
block-diagonal ((35) and (36) are zero for � �= k). Thus, only
the inverses of the diagonal blocks (34) need to be computed
in order to evaluate the Newton-Raphson update rule.

Conditions (32) and (33) can be satisfied by a suitable
choice of the nonlinear functions φk (·). The following lemma
offers one possible choice that we will consider further in this
article.

Lemma 3: Rational nonlinear functions

φrati
k (s) = s∗k

1+∑K
j=1 |s j |2

, k = 1, . . . , K, (37)

satisfy the conditions defined by (32) and (33).
Proof: The proof, which can be easily done using the defi-

nitions (25)-(31), is left to the reader. �

B. INFORMED ALGORITHM FOR UNSTRUCTURED MODEL
Given an initial value of ak , k = 1, . . . , K , denoted by aini

k ,
we now employ the NR scheme to find a local maximum
of (22). Which source the algorithm extracts depends on the
initialization and the reference signal.

Nonlinearities such as (37) are assumed to meet the con-
ditions of Statement 2. As the Hessian matrix becomes block
diagonal, the updates of the mixing vectors a1, . . . , aK can
be computed separately. The NR rule suggests the update
ak ← ak −H−∗k �k where Hk is given by (34), that is

Hk = ν̇k − ρ̇k

ν̇k

(
σ̇ 4

α,k

σ̇ 2
k

Ċ−∗αk
Ċ∗xk

Ċ−∗αk
− ẇ∗k ẇT

k

)
. (38)

However, in order to implement this procedure, two issues
must be resolved:

1) The true values of the statistics that appear in (34) are
not known. Therefore, we replace these values with
the corresponding sample-based averages, with the true
value of the SOI being replaced by its current estimate.

2) Hk is rank deficient, which the reader can verify by
showing that Hk ȧ∗k = 0. This property is caused by the
scaling ambiguity (see Section II-A): the scale of ȧk can
be arbitrary (and compensated by the scale of ẇk or ṡk),
but the contrast function (22) does not constrain it in
any way. An efficient solution is to remove the rank-one
term from (34). We, therefore, introduce augmented6

Hessian matrices

H̃k = νk − ρk

νk

σ 4
α,k

ς2
k

C−∗αk
C∗xk

C−∗αk
. (39)

Now, the NR scheme suggests updating each ak as

ak ← ak − H̃−∗k �k

6A detailed rationale for this step is provided by Proposition 2 in [13].

Algorithm 1: The iFastIVE Algorithm.

= ak − νk
νk−ρk

ς2
k

σ 2
α,k

R−1
k

(
aαOC,k − ν−1

k E

[
φk (s) · xk

σk

])
,

= ak − νk
νk−ρk

ak + 1
νk−ρk

ς2
k

σ 2
α,k

R−1
k E

[
φk (s) · xk

σk

]
(40)

We use the fact that ak can be arbitrarily scaled and multiply
the right-hand side (RHS) of (40) by νk − ρk , which gives

ak ← ς2
k

σ 2
α,k

R−1
k

(
E

[
φk (s) · xk

σk

]
− ρkaαOC,k

)
. (41)

In practice, we have found that it is important to multiply the

RHS of (41) by
σ 2

α,k

ς2
k

Rk , which can be explained by the need

to project the original value to the manifold specified by the
constraint (17). The final update rule then simplifies to

ak ← E

[
φk (s) · xk

σk

]
− ρkaαOC,k, (42)

which gives us a new starting value of ak for the next it-
eration. The application of the constraints (17)-(18) and the
update (42) are repeated until a stopping criterion reflecting
the latest changes is ak , k = 1, . . . , K is satisfied (see line 15in
Algorithm 1). The resulting algorithm will be referred to as
iFastIVE; its pseudo-code is summarized in Algorithm 1.

1) PREVIOUS VARIANTS OF IFASTIVE
The iFastIVE algorithm itself is not particularly new. Similar
methods have been recently derived in [49], [50]. However,
the previous derivations, which did not utilize constraints
(17)-(18), required heuristic steps that cannot be applied gen-
erally, for example, in the case of structured mixing models.
The approach in [49] attempts to impose (16) in (9), but prob-
lems with the non-orthogonality of the SOI and background
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subspaces must be solved by heuristic changes to the gradi-
ent of the contrast function. Similarly, the derivation in [50]
intuitively uses (16); however, the way the original blind algo-
rithm is modified cannot be applied to other algorithms, such
as the one proposed in [51]. In contrast, the derivation of iFas-
tIVE presented here offers a cleaner interpretation compared
to [49], [50], and in the following sections, we will demon-
strate that it can be generalized to other structured mixing
models.

C. INFORMED PHASE-SHIFT IVE
The contrast function (23) for the semi-blind estimation of
λ1, . . . , λK was obtained by composing the contrast function
(22) and the structured mixing model (6). It is, therefore,
convenient to use the complex-valued chain rule [59] for
computing the first and second derivatives. First, we note that
by (6),

∂ak (λk )

∂λ�

=
(

∂a∗k (λk )

∂λ�

)∗
=

{
i(ak (λk )� vk ) � = k

0 � �= k
, (43)

where � denotes the Hadamard (element-wise) product. Us-
ing this and assuming that the conditions of Statement 1 are
met, we can use (26), and by the chain rule we have that

∂Cλ

∂λk
=

K∑
�=1

(
∂Ca
∂a�

)T
∂a�(λ� )

∂λk
+

(
∂Ca
∂a∗

�

)T ∂a∗
�

(λ� )
∂λk

(44)

= �H
k

∂ak (λk )
∂λk
+�T

k
∂a∗k (λk )

∂λk
(45)

= −2� {�H
k (ak (λk )� vk )

}
, (46)

where �{·} denotes the imaginary part of the argument.
For obtaining a second-order derivative of Cλ, we want to

use the results of Statement 2. Therefore, we will consider the
value of the derivative when N →+∞ and λk = λ̇k . Thus,

∂2Cλ

∂λ2
k

= −2�
{

∂�H
k

∂λk
(ak (λk )� vk )+ i�H

k (ak (λk )� v2
k )

}
,

= −2�
{

∂�H
k

∂λk
(ak (λk )� vk )

}
, (47)

where v2 = v� v. Note that the latter equation in (47) holds
because �k = 0 for N →+∞ and λk = λ̇k . To express ∂�k

∂λk
,

we apply the chain rule and use (34)-(36) and (43), which
gives

∂�k

∂λk
=

K∑
�=1

(
∂�T

k
∂a�

)T
∂a�(λ� )

λk
+

(
∂�T

k
∂a∗

�

)T
∂a∗

�
(λ� )

λk
(48)

= HT
k

∂ak (λk )
λk
= iH∗k (ak (λk )� vk ). (49)

By putting (49) into (47),

∂2Cλ

∂λ2
k

= −2(ak (λk )� vk )H H∗k (ak (λk )� vk ), (50)

where the imaginary part operator �{·} could have been re-
moved since H∗k is hermitian.

Note also that from (35)-(36) it follows that the mixed

second-order derivatives are zero, i.e. ∂2Cλ
∂λk∂λ�

= 0 for k �= �.
Therefore, the Newton-Raphson updates for λ1, . . . , λK are
separated and can be performed through

λk ← λk − ∂Cλ

∂λk/

∂2Cλ

∂λ2
k

, k = 1, . . . , K, (51)

where the derivatives are given by (46) and (50). Similarly to
the previous algorithm, we have to cope with the unknown
values in Hk that appear in (50). Here again, we replace them
with their current estimates. In addition, we found it necessary
to replace the value of ẇk so that the rank of the resulting
matrix is d − 1 (similarly to the rank of the true Hk). To this
end, we first rewrite Hk as

Hk = ν̇k − ρ̇k

ν̇k
σ̇ 4

α,kĊ−∗αk

(
1

σ̇ 2
k

Ċ∗xk
− ȧ∗k ȧT

k

)
Ċ−∗αk

, (52)

which we are allowed to do by Lemma 1. Based on this, we
replace Hk by

H̆k = νk − ρk

νk
σ 4

α,kC−∗αk

(
1

ς2
k

C∗xk
− a∗αOC,kaT

αOC,k

)
C−∗αk

,

(53)
because ς−2

k C∗xk
− a∗αOC,kaT

αOC,k has rank d − 1; for proof,
see Appendix D. An iterative semi-blind algorithm for the
structured model (6), using the constraints (17)-(18) and the
NR update rule (51) is proposed in a similar way to iFastIVE.
We will refer to it as iPSIVE (Informed Phase-Shift IVE); the
pseudo-code is summarized in Algorithm 2.

D. INFORMED FAR-FIELD IVE
Under similar assumptions and using the chain rule, we
now easily derive an algorithm for the one-parameter mixing
model (8), whose contrast function is given by (24). By (44)
and (46), it easily follows that

∂Cλ

∂λ
= −2

K∑
k=1

� {�H
k (ak (λ)� vk )

}
. (54)

Similarly to (47), the derivative of (54) reads

∂2Cλ

∂λ2
= −2

K∑
k=1

�
{

∂�H
k

∂λ
(ak (λ)� vk )

}
, (55)

and following (49),

∂�k

∂λ
= HT

k
∂ak (λ)

λ
= iH∗k (ak (λ)� vk ). (56)

Then, by putting (56) into (55), the second derivative of Cλ(λ)
based on Statement 2 is

∂2Cλ

∂λ2
= −2

K∑
k=1

(ak (λ)� vk )H H∗k (ak (λ)� vk ), (57)

where the unknown exact value of Hk can be replaced by H̆k

given by (53). The corresponding algorithm will be referred
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Algorithm 2: The iPSIVE Algorithm.

to as iCaponIVE, and its pseudo-code is briefly described in
Algorithm 3.

V. NUMERICAL VALIDATION
A. INFORMED ALGORITHMS FOR UNSTRUCTURED MIXING
MODEL
We here verify the functionality of iFastIVE through the
Monte Carlo simulation similar to that described in Sec-
tion 5.1.1 in [50]. In a trial, mixtures of signals and references
are generated at random, and the SOI is extracted by the com-
pared algorithms. The evaluation criteria are the success rate
and the signal-to-interference ratio (SIR). The success rate is
equal to the percentage of trials where the SIR above 3 dB is
achieved; the SIR is averaged over the successful trials. Each
setup is repeated in 5000 trials.

The signal mixtures are generated as follows. K = 6
complex-valued mixtures each of d = 6 independent sig-
nals of length N = 200 samples are generated and mixed by
random mixing matrices. The SOI is drawn from the cir-
cular Generalized Gaussian distribution [60] with the shape
parameter ξ = 0.4 and variance σ 2

� = sin( �π
L+1 )τ on the lth

interval, � = 1, . . . , L, L = 10; the length of intervals is N/L;
τ = 2. The SOIs of the K mixtures are mixed by a random
K × K unitary matrix to make them mutually dependent. The
other interference signals are independently drawn from the

Algorithm 3: The iCaponIVE Algorithm.

Laplacean distribution with random variance on the intervals
between

√
0.1 and 10. Note that each interfering source can be

confused with the target source. The algorithms are initialized
in a randomly perturbed true mixing vector with perturbation
variance δ2 = 0.1.

The reference information rk (n) consists of a noisy variance
profile of the SOI given by

rk (n) =
√

1− ε2σ̃ 2
� + εuk (�), (58)

where uk (�) ∼ U(0, 1) (the uniform distribution on [0,1]),
� = � nL

N � is the interval index, and σ̃ 2
� is the sample vari-

ance of s̃k (n) = √1− ε2sk (n)+ εwk (n) on the �th interval
where wk (n) ∼ CN(0, 1). The parameter ε2 ∈ [0, 1] controls
the quality of the side information. The weighting functions
are chosen according to αk (n) = 1

λ+|rk (n)|2 with λ = 10−3.
The results of the simulation, depending on the parameter

ε2, are shown in Fig. 1. We compare the blind algorithm Fas-
tIVA [13] (FIVA), its informed variant from [50] (iFIVA), the
informed variant iFastIVE derived in this article, and the in-
formed auxiliary function-based algorithm [61] (p-AuxIVA).

While the performance of the blind FIVA is independent of
ε2, the performances of the other algorithms are best for ε2 =
0, when rk (n) contains accurate information about the SOI
variance, and weakest for ε2 = 1, when rk (n) contains only
noise. For ε2 = 0, the informed algorithms converge globally
to the SOI in almost 100% of trials and achieve a higher SIR
than the blind FIVA. As ε2 increases, their success rate and
SIR decrease, and near ε2 = 1, the results are even worse than
those of FIVA.

Fig. 2 shows histograms of the number of iterations re-
quired by the algorithms to reach the stopping criterion or
the limit of 100 iterations. As the value of ε2 increases,
the number of iterations required for convergence generally
grows, with the exception of FICA, whose convergence is

VOLUME 7, 2026 203



KOLDOVSKÝ ET AL.: FROM INFORMED INDEPENDENT VECTOR EXTRACTION TO HYBRID ARCHITECTURES

FIGURE 1. Success rate and average SIR of compared algorithms as
functions of the quality of prior information controlled through the
parameter ε2 (smaller values mean higher quality).

independent of ε2. The proposed iFastIVE and iFIVA exhibit
fast convergence within 10 iterations in most trials, unless the
prior information is poor (ε2 > 0.5). Such rapid convergence
motivates hybridization of algorithms through unrolling, as
convergence could be achieved by passing through a small
number of layers (see Section VI).

The experiment thus verified that the informed algorithms
are capable of using reference information. At the same time,
we verified that iFastIVE is comparable to similar algorithms
such as iFIVA and p-AuxIVA. This confirms the relevance of
the contrast function (22) using the constraint (17)-(18).

B. ALGORITHMS FOR PHASE-SHIFT AND FAR-FIELD
MIXING MODELS
We perform a similar simulation to the previous one, with
the difference that mixing matrices are generated such that
their first column obeys the structure given by (6); we con-
sider vk = [0, 1, 2, . . . , d − 1]T and the ground-truth value
λk = 0.5, k = 1, . . . , K . The data thus obey the phase-shift as
well as the far-field mixing models. In this experiment, K = 5,
d = 4, and the reference signals are equal to

rk (n) =
√

1− ε2sk (n)+ εwk (n), (59)

where wk (n) ∼ CN(0, 1). For simplicity, we select L = 1 so
all the signals are stationary.

The compared algorithms are the proposed informed algo-
rithms iFastIVE, iPSIVE, and iCaponIVE. We also evaluate
their blind variants, i.e., without reference information (as
if rk (n) = 1), denoted as FastIVE, PSIVE, and CaponIVE,
respectively. The value of ε2 is put equal to 0.4. We investigate
algorithms’ performances as the length of data N varies from
10 through 1000.

The results in Fig. 3 show that iPSIVE and iCaponIVE,
as well as their blind variants, outperform iFastIVE resp.
FastIVE when the data is very short (say, N ≤ 50). For N >

50, iCaponIVE shows significantly limited performance com-
pared to the other methods.7 While iPSIVE still outperforms
iFastIVE in terms of SIR as N > 50, its success rate grows
more slowly with N than that of iFastIVE.

In conclusion, the results suggest that knowledge of the
structure of the mixing vector, and thus its reduced param-
eterization, can be particularly beneficial when little data
is available.8 Another important fact is that the simulations
verified the generality of the procedure for deriving iIVE algo-
rithms for structured mixing models. All informed algorithms
in the experiment achieve improved results than their blind
counterparts.

VI. HYBRID TSE ARCHITECTURES
This section addresses a pilot study in which iFastIVE is in-
corporated into hybrid trainable architectures. There are many
ways to integrate the algorithm, and it depends greatly on the
application. Here, we will focus on the basic task of mining
side information for iIVE, and the target application is TSE in
the time-frequency domain.

A. SCENARIO
The target speaker (SOI) and an interfering speaker are talking
simultaneously in a simulated room of dimensions 5× 6×
2.5 m. The SOI is located in front of a microphone array
of 3 microphones at a random distance in 〈0.125, 1.25〉 m,
within the angle 〈−30, 30〉 degrees from the axis of the array.
The interfering speaker can be located anywhere else in the
room, excluding positions directly behind the SOI and behind
the array; its minimum distance to the array is 1.5 m. The
situation is simulated using the room impulse response gen-
erator [63], such that the reverberation time is T60 = 180 ms.
The dry utterances are taken from the development part of the
Wall Street Journal dataset (WSJ0-2mix). The reverberated
utterances are summed together at the Signal-to-Noise Ratio
(SNR) in the range 〈2, 10〉 dB. In this way, 1000 training, 200
validation, and 300 test mixtures of length 5 s are generated.

B. SIDE INFORMATION PROVIDED THROUGH A TRAINED
NOISE-ONLY ACTIVITY DETECTOR (NAD)
Intuitively, the weight function α(n) in (15) should emphasize
only those moments when only noise and interference are
active. This would bring (15) closer to the noise covariance
matrix, ensuring that (18) quickly approximates the true sep-
arating vector. Therefore, we consider a trained NAD that is
directly used as the value of α(n). The NAD is a real-valued
deep neural network detecting frames, where the interfering

7The results suggest that CaponIVE is not statistically efficient. We do not
know the theoretical reason for this, but we conjecture that this might be
caused by the mixing parameters being too tightly bound by the orthogonal
constraint. Although this reduces the number of parameters to a single real pa-
rameter, it is possible that a weaker binding would allow statistical efficiency
to be achieved. For example, the performance analysis in [62] shows how
orthogonal constraint deteriorates the accuracy of the Symmetric FastICA
algorithm.

8In the future, this property might be interesting for online adaptive meth-
ods, which use the shortest possible data context due to short latency.
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FIGURE 2. Histograms of the number of iterations until the stopping criterion is reached in 1000 trials; the maximum number of iterations is 100. The
number of iterations required for convergence generally increases with ε, which controls the quality of prior information. A high number of stops at 100
iterations means that the algorithm terminated after reaching the maximum number of iterations, which typically indicates slow convergence or
divergence.

FIGURE 3. Success rate and average SIR of compared algorithms as
functions of data length N; the experiment covers extremely short data
N = 10, . . ., 50 where structured model-based iPSIVE and iCaponIVE show
advantages compared to the generic model-based iFastIVE.

source is dominant. Its target value is 1 for frames where the
energy of the interferer is by 10 dB greater than that of the
SOI, and 0 elsewhere.

The NAD input consists of 3 complex-valued STFT coef-
ficients of the signals from microphones; a noncausal context
of 15 frames is used, with 7 frames preceding and 7 following
the current frame. The real and imaginary values are split,
forming the 2× 3 = 6 input channels. Note that according to
the assumed scenario, the SOI and the interferer should be
identifiable from the multichannel input data based on their
positions.

The NAD architecture is shown in Fig. 4. The processing
starts with 4 blocks based on convolutional layers. In each
block, a 2-D convolutional layer is followed by an average
pooling, reducing the frequency resolution K by a factor of 2;
the time-resolution remains unchanged. Subsequently, a batch

FIGURE 4. NAD network architecture: Each arrow represents a layer or an
operation, each rectangle indicates the resulting dimensions of the data
(frequency resolution × number of frames × number of feature maps).

normalization is applied, followed by the application of the
ReLU nonlinearity. Next, learnable positional parameters are
added to the 15 frequency-reduced feature vectors to provide
explicit temporal information. The features are processed by
a Transformer encoder layer with multi-head self-attention,
featuring 8 attention heads operating on a 64-dimensional
embedding space. The multi-head attention outputs are then
fed to a linear attention projection layer that computes atten-
tion scores, which are normalized using softmax to produce
attention weights. The final encoded feature vector is obtained
through a weighted sum of the attention outputs across the
temporal dimension. The output of the network is computed as
a linear combination of the feature vector elements followed
by a sigmoid, which limits the value of the output weighting
α(n) to the interval 〈0, 1〉. The NAD network features 55.9 k
trainable parameters. Its training proceeds through minimiza-
tion of the mean square error.

C. FINETUNING THROUGH AN UNROLLED ALGORITHM
Even the target NAD value does not guarantee the optimal
choice of the covariance matrix (15). Here, we will therefore
try to improve the NAD estimate by directly optimizing the
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TABLE 1. Experimental Results for the Baseline Scenario and All Its Variants Concerning Unseen Conditions

iFastIVE output. We use the unrolling procedure [64] to create
a single neural structure.

The unrolling proceeds as follows. The NAD output is
evaluated for the entire context of data n = 1, . . . , N . Then,
the result is fed to 5 iterations of iFastIVE. The extraction
performance is evaluated using the mean-square error (MSE)
loss between the estimated and true SOI. Using backpropaga-
tion, we finetune the NAD starting from its pretrained state.
The unrolled architecture is referred to as uFastIVE.

D. COMPARED METHODS
In the following experiments, we evaluate the performance of
the blind variant of iFastIVE (FastIVE), iFastIVE informed
by the output of the pre-trained NAD, and the finetuned
uFastIVE. For comparison, two oracle approaches utiliz-
ing ground-truth source signals are considered: 1) iFastIVE
informed by the ideal target of the NAD as defined in Sec-
tion VI-B (oFastIVE), and 2) the oracle Multi-channel Wiener
filter (oMWF, [65]) corresponding to the optimal spatial filter
in the least square sense.

Another important comparison is made with two well-
known fully data-driven methods: A) SpeakerBeam (6.7 M
parameters, [31]) is a single-channel time-domain target
speech extraction model. It identifies the SOI through refer-
ence utterances called enrollment. The enrollments originate
from WSJ0 sentences that are not included in our train/test
sets. B) ConvTasNet (5.0 M parameters, [30]) is a single-
channel time-domain separation/enhancement approach rec-
ognizing the SOI implicitly through the clean/mixture signal
pairs contained in the training data. In the case of our training
set, ConvTasNet is likely to focus most on the loudest or least
reverberated speaker.

The experiments are evaluated using the BSS_EVAL tool-
box [66]. The presented measures are SIR (note that the SIR
in BSS_EVAL differs from the criterion used in Section V),
which quantifies suppression of the unwanted sources, and
SDR, which measures both the suppression and the distor-
tion of the desired source. In addition, the extended STOI
metric [67] is also evaluated, which measures the short-time
objective intelligibility. The given values represent averaged
metrics over all 300 test extraction experiments.

E. BASELINE RESULTS
The results for the baseline scenario described in Section VI-A
averaged over 300 test mixtures are summarized in the Col-
umn 1 of Table 1 (denoted by Table 1-1). They show that
iFastIVE and uFastIVE are able to consistently extract the
SOI while the blind FastIVE yields poor performance. This
is mostly due to the ambiguity of the target speaker, causing
the blind method to focus on the interfering speaker in many
trials.

The iFastIVE and uFastIVE yield performances approach-
ing that of the oracle methods oFastIVE and oMWF. Note
that oFastIVE (i.e., extraction endowed with accurate side
information) achieves comparable results to oMWF, which
points to the efficiency of iIVE when accurate side informa-
tion is provided. Although the room for improvement is not
large, uFastIVE improves the results compared to iFastIVE by
0.4 dB SDR and 0.01 STOI, demonstrating the effectiveness
of optimization through backpropagation. Note that iFastIVE
and uFastIVE are trained to the baseline scenario, so their
“matched” variants are not relevant in this case (bullets are
marked instead of results).

The fully data-driven SpeakerBeam and ConvTasNet show
strong results in terms of SIR, where they even outperform
oMWF. The iFastIVE and uFastIVE outperform them in terms
of SDR. It is worth noting here that (i/u)FastIVE requires
two orders of magnitude fewer trainable parameters (55.9 k)
compared to SpeakerBeam and ConvTasNet; at the same time,
however, they are slightly advantaged by using all three input
channels. The comparison is therefore not entirely objective;
nevertheless, it does point to the effectiveness of iIVE in terms
of the number of trainable parameters.

Similarly, we evaluate algorithms with structured mixing
models from Sections IV-C and IV-D. We compare the purely
blind variants PSIVE and CaponIVE, informed iPSIVE and
iCaponIVE, where the weighting function is the output of
the pre-trained NAD, and the informed algorithms endowed
by oracle weightings, denoted as oPSIVE and oCaponIVE,
respectively.

By comparing the results in Table 2 with those in
Table 1-1, we can see that, in the TSE task considered
here, the algorithms with the structured mixing models bring

206 VOLUME 7, 2026



TABLE 2. Baseline Scenario (Far-Field Models)

weaker performance than those with the unstructured model.
The main reason is that the far-field models cannot cap-
ture room reverberation and are, therefore, not very suitable
for TSE in echoic environments. Nevertheless, the results
show significant improvement in performance compared to
blind algorithms when side information is used. This con-
firms the functionality of the informed algorithms iPSIVE and
iCaponIVE.

In conclusion, we should mention that direct NAD re-
training through an unrolled iPSIVE or iCaponIVE was
unsuccessful due to the high sensitivity of these algorithms
to poor data conditionality (here we mean cases where some
frequencies feature a very high ratio between the largest and
the smallest eigenvalue of the covariance matrix of input sig-
nals, such that it can cause numerical problems, especially
in single-precision arithmetic). This is particularly caused by
the inverse covariance matrices that appear in (26) and (38),
which cancel each other out in the case of iFastIVE but not
in the case of iPSIVE and iCaponIVE. In the future, it will
therefore be necessary to address poor data conditionality for
these algorithms, e.g., using principal component analysis.
At the same time, it remains an open question under what
conditions and in what way structured models can be applied
to real-life problems such as TSE, where their alternatives are
methods using regularized contrasts, such as [21], [22]. This
topic is, however, beyond the scope of this article.

F. RESULTS IN UNSEEN CONDITIONS
We now focus on the methods’ results under conditions that
differ from the baseline scenario for which they were trained.
In each experiment, we change only one of the parameters
to observe its effect. All other properties, such as utterances,
speakers, and their locations, remain the same. We also state
the results of methods retrained for the changed conditions.
The tables indicate this by the string “matched” after the
method name.

1) DIFFERENT ROOM DIMENSIONS
In the experiment here, we change the room dimensions from
the original 5× 6× 2.5 m to 3× 4× 2.5 m. This changes the
character and color of the reverberation, while T60 remains the
same.

The results are shown in Table 1-2. For oMWF, there is
a slight decline in SDR/SIR by about 1 dB and in STOI by
0.01, which means that the new room is a bit more difficult

for speaker extraction than the baseline. This is confirmed
by all methods that have not been adapted to the new condi-
tions: (i/u)FastIVE as well as ConvTasNet and SpeakerBeam,
lose 3-4 dB in SDR compared to oMWF. The retraining of
(i/u)FastIVE brings an improvement of about 2 dB in SDR and
0.05 in STOI. Consequently, changing the size of the room
has an effect on the methods, but the loss in efficiency is not
critical.

2) REVERBERATION TIME
This experiment considers two more reverberant scenarios:
instead of the T60 = 180 ms in the baseline, the cases of
T60 ∈ {300, 600} ms are considered. The results are shown in
Table 1-3.

The metric values are significantly lower compared to
the baseline scenario, showing that the reverberation time is
an important parameter. For example, the oMWF at T60 =
600 ms achieves metrics by −4.6 dB SDR and −5.3 dB
SIR lower compared to the baseline scenario. We note that
the STFT length is still 512 samples as in the baseline sce-
nario, which might be too short compared to the length of the
impulse responses; the influence of the increased frequency
resolution is studied in the next subsection.

There is a larger gap between the FastIVE variants and
oMWF, especially in SDR and STOI; oFastIVE yields consid-
erably lower SDR and STOI compared to oMWF as well. For
T60 = 600 ms, the models matched to T60 = 180 ms are able
to improve only SIR compared to the mixture, while SDR is
almost unchanged, and STOI even deteriorated. By contrast,
the matched uFastIVE yields improvement by +1 dB SDR
and +6.6 dB SIR, with only STOI unchanged.

The mismatched uFastIVE yields comparable results to
SpeakerBeam for T60 = 300 ms and is slightly outperformed
(by 0.8 dB SIR and 1.5 dB SDR) for T60 = 600 ms. ConvTas-
Net shows the most robust performance in this experiment.

3) DOUBLE FREQUENCY RESOLUTION
Now, we explore the proposed methods’ performance when
the STFT frequency resolution is doubled, that is, to 1024.
However, for comparison with the trained baseline conditions,
we must keep the original resolution 512 of the input data to
the NAD architectures. The NAD output is used to weight the
1024-resolution STFT frames, which are then input to iFas-
tIVE. Note that ConvTasNet and SpeakerBeam operate with
time-domain signals on their inputs, so their performances
coincide with those achieved in the baseline setting.

Comparing the results in Table 1-4 to Table 1-1, all the
frequency-domain models achieve lower SDR and STOI val-
ues, although the time-domain test data are the same in both
experiments. There is also a larger SDR/STOI gap between
the trained iFastIVE variants and the oracle methods. By ex-
amining the behavior of the algorithms in more depth, we
observed a sensitivity to poor data conditionality, which is
worse at the higher frequency resolution. A solution offers
preprocessing using principal component analysis. However,
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this problem is beyond the scope of the article and will be
addressed in the future.

The matched uFastIVE yields the best results among the
proposed methods, improving by 1.3 dB SDR and 0.06 STOI
compared to iFastIVE.

4) LOW INPUT SIR
In the baseline scenario, the input SIR ranges within
〈2, 10〉 dB, which might be a property of the training data
that ConvTasNet and SpeakerBeam rely too heavily on. In this
experiment, we therefore modify the input SIR in test data to
the range within 〈−6, 0〉 dB.

Table 1-5 shows that although the input SDR and SIR are
now around −3 dB, the improvements of the metrics for
the iFastIVE variants remain comparable with the baseline
scenario (about 9 dB SDR and 12 dB SIR). The mismatched
iFastIVE variants yield only slightly lower metrics compared
to the matched ones, by about 1 dB SDR and 2 dB SIR.
Anyway, it can be stated that the proposed methods gen-
eralize their performance to this scenario. By contrast, the
performance of the fully data-driven methods ConvTasNet
and SpeakerBeam deteriorates significantly. It seems that un-
der the considered mismatched conditions these methods are
not able to identify the target speaker reliably. The uFastIVE
trained for the baseline scenario outperforms ConvTasNet and
SpeakerBeam by about 4 dB in SDR and 2− 3 dB in SIR.

VII. CONCLUSION
We have shown how iIVE methods can be intuitively derived
using constraints between the mixing and separating vectors
that approximate the MVDR, using SOI-dependent reference
signals. The methods can be effectively coupled with trainable
architectures that generalize well to unseen conditions in our
experiments. Fully data-driven methods often achieve better
performance in some conditions, but this comes at the cost
of a two orders of magnitude higher number of trainable
parameters and sensitivity to deteriorated performance due to
unseen test conditions.

The potential of hybrid methods based on iIVE is far from
exhausted. In the future, we plan to integrate deeper with other
trainable modules, e.g., at the input as an encoder or at the
output as a post-processor. In this article, we have not yet ad-
dressed the integration of structured mixing models in hybrid
systems, but this option certainly offers further potential.

APPENDIX
A: PROOF OF LEMMA 1
Since αk only depends on ṡk and is independent of ẏk , for
N →+∞, it holds that

Cαk = E
[
αkxkxH

k

] = E
[
αk|sk|2

]
ȧk ȧH

k + E[αk]Cyk . (60)

Without loss on generality, let us assume that E[αk] = 1.
It holds that σ̇ 2

α,k = ẇH
k Cαk ẇk = (ȧH

k C−1
αk

ȧk )−1 = E[αk|sk|2].

Since Cxk = σ̇ 2
k ȧk ȧH

k + Cyk , we can rewrite (60) as

Cαk = Cxk + (σ̇ 2
α,k − σ̇ 2

k )ȧk ȧH
k .

By the Woodbury matrix identity,

C−1
αk
= C−1

xk
− C−1

xk
ȧk ȧH

k C−1
xk

(
σ̇ 2

k (σ̇ 2
α,k−σ̇ 2

k )

σ̇ 2
α,k

)
. (61)

Using the fact that σ̇ 2
k C−1

xk
ȧk = ẇk (see Section III-C1) and

that ẇH
k ȧk = 1, by multiplying (61) by σ̇ 2

α,k ȧk from right, we
obtain

σ̇ 2
α,kC−1

αk
ȧk = σ̇ 2

α,kC−1
xk

ȧk − C−1
xk

ȧk (σ̇ 2
α,k − σ̇ 2

k ) = ẇk, (62)

which is the assertion of the lemma. �

B: PROOF OF STATEMENT 1
We are going to evaluate the first Wirtinger derivative of
Cak by a∗k under the assumptions of the statement. Cak is a
compound of (9) with the constraint ak ← aαOC,k (ak ) and
wk ← wα,k (ak ) defined by (17)-(18). The expression subject
to the derivative consists of four terms:

Cak (a1, . . . , aK ) = E
[
log f (s)

]− K∑
k=1

log ς2
k

−
K∑

k=1

E
[
zH

k Ċ−1
zk

zk

]
+ (d − 2)

K∑
k=1

log |γαOC,k|2, (63)

where s = [ s1
ς1

, . . . ,
sK
ςK

]T ,

sk = wH
α,kxk = σ 2

α,kaH
k C−1

αk
xk, (64)

zk = B(aαOC,k )xk = σ 2
α,k

ς2
k

B(Rkak )xk, (65)

γαOC,k = eH
1 aαOC,k = σ 2

α,k

ς2
k

eH
1 Rkak, (66)

where Rk = Cxk C−1
αk

; e1 denotes the unit vector (the first col-
umn of Id ). We will use the following identities:

∂
∂a∗k

σ 2
α,k = −σ 2

α,kwα,k, (67)

∂
∂a∗k

ςk = ςk

(
1
2

σ 2
α,k

ς2
k

C−1
αk

Cxk − Id

)
wα,k, (68)

∂
∂a∗k

sk = −skwα,k + σ 2
α,kC−1

αk
xk, (69)

∂
∂a∗k

s∗k = −s∗k wα,k, (70)

which the reader can verify from definitions. The derivative of
the first term in (63) reads

∂
∂a∗k

E
[
log f (s)

] = E

[
∂ log f (s)

∂sk

(
∂sk
∂a∗k

1
ςk
+ sk

∂ς−1
k

∂a∗k

)
+∂ log f (s)

∂s∗k

(
∂s∗k
∂a∗k

1
ςk
+ s∗k

∂ς−1
k

∂a∗k

)]
. (71)

By the assumption of Statement 1, we apply the replacement
∂ log f (s)

∂sk
←−ν−1

k φk (s), thus also ∂ log f (s)
∂s∗k

←−ν−∗k φ∗k (s).

Then, by using the identities (67)-(70) and using the fact that
ν−1

k E[φk (s) sk
ςk

] = 1, which follows from the definition (25),
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after some algebra we obtain

∂
∂a∗k

E
[
log f (s)

]
= σ 2

α,k

ς2
k

C−1
αk

Cxk wα,k − ν−1
k σ 2

α,kC−1
αk

E
[
φk (s) xk

ςk

]
= σ 2

α,kC−1
αk

(
aαOC,k − ν−1

k E
[
φk (s) xk

ςk

])
. (72)

This result already corresponds with (26), however, there are
still terms 2-4 in (63) to be taken into account. In the follow-
ing, we show that the sum of their derivatives is zero. This
requires the orthogonality condition, thus demonstrating the
importance of the choice of the constraint (17)-(18).

Terms 2-4 in (63) are separated with respect to k. Therefore,
we can omit the index k for now and deal with the case as if
K = 1. As for term 2, using (68), we obtain

∂

∂a∗
log ς2 = −2

1

ς

∂ς

∂a∗
= 2wα − wαOC, (73)

where we use the definition

wαOC,k = σ 2
α,k

ς2
k

C−1
αk

Cxk wα,k =
σ 2

αk
ς2

k
RH

k wα,k . (74)

Let E be the matrix such that Id =
[

eH
1
E

]
(also, E =[

0 Id−1
]
), and let x̃ = eH

1 x and x̃ = Ex, that is, x =
[

x̃
x̃

]
. For

the computation of the derivative of the third term of (63), we
will use the following definitions and identities:

z̃ = B(Ra)x = x̃ERa − (eH
1 Ra)x̃ (75)

∂
∂a∗ z̃H = x̃∗RH EH − RH e1x̃H , (76)

zH Ċ−1
z z = σ 4

α

ς4 z̃H Ċ−1
z z̃. (77)

Now,

∂
∂a∗E[zH Ċ−1

z z] =
(

2σ 2
α

ς4
∂σ 2

α

∂a∗ − 4 σ 4
α

ς5
∂ς
∂a∗

)
E[z̃H Ċ−1

z z̃]

+ σ 4
α

ς4
∂

∂a∗E[z̃H Ċ−1
z z̃]

= (−2wα − 2wαOC + 4wα )E[zH Ċ−1
z z]

+ σ 2
α

ς2

(
E[x̃∗RH EH Ċ−1

z z]

−E[RH e1x̃H Ċ−1
z z]

)
. (78)

For further computations, we remind that, according to (3),

the observed signals x can always be written as x = a
[

s
z

]
where s = wH

α x, z = B(aαOC)x, and A is parameterized by
the couple of vectors wα and aαOC according to (4). We now
exploit the fact that the subspaces generated by s and z defined
this way are orthogonal (see Section III-D), which means that
E[zs∗] = 0. Therefore,

E[zxH ] = [
E[zs∗] E[zzH ]

]
AH = [0 Cz]AH , (79)

where Cz = E[zzH ] is the sample-based covariance of the
current estimate of z. By the assumption of Statement 1, we
replace the unknown Ċz by Cz. By (79)

C−1
z E[zxH ] = [0 Id−1]AH = EAH . (80)

By (4), it holds that EAH e1 = Ewα = hα and EAH EH =
γ−∗

αOC(hαgH
αOC − Id−1) where gαOC = EaαOC. Then,

E[x̃∗RH EH C−1
z z] = RH EH C−1

z E[zxH ]e1

= RH EH hα = RH
[

0
hα

]
,

E[RH e1x̃H C−1
z z] = RH e1tr

(
C−1

z E[zxH ]EH )
(81)

= RH e1tr
(
γ−∗αOC(hαgH

αOC − Id−1)
)

= RH e1(−βα − γ−∗αOC(d − 2)), (82)

where we have used (5); tr(·) denotes the trace of the ar-
gument. By putting the latter identities into (78) together
with the substitution Ċz ← Cz and using that E[zH C−1

z z] =
tr(C−1

z E[zzH ]) = d − 1,

∂
∂a∗E[zH Ċ−1

z z] = 2(d − 1)(wα − wαOC)

+ σ 2
α

ς2 RH

⎛⎜⎜⎜⎝
[

0
hα

]
+ βαe1︸ ︷︷ ︸

wα

+(d − 2)γ−∗αOCe1

⎞⎟⎟⎟⎠
= 2(d − 1)(wα − wαOC)+ wαOC + d−2

γ ∗
αOC

σ 2
α

ς2 RH e1. (83)

Finally, we compute the derivative of the last term in (63).
Using (66),

(d − 2) ∂
∂a∗ log |γαOC|2

= (d − 2) ∂
∂a∗

(
log σ 4

α

ς4 + log aH RH e1

)
. (84)

Using the part of (78), where the derivative of σ 4
α

ς4 appears, and

using the fact that (66) can be written as aH RH e1 = ς2

σ 2
α
γ ∗αOC,

(d − 2) ∂
∂a∗ log |γαOC|2

= 2(d − 2)(wα − wαOC)+ d−2
γ ∗
αOC

σ 2
α

ς2 RH e1. (85)

By using (73), (83) and (85) in (63), we can see that the
derivatives of terms 2-4 in (63) sum to zero, which concludes
the proof. �

C: PROOF OF STATEMENT 2
The assumptions of the statement say that ak = ȧk and N →
+∞. In this proof, we will, therefore, mostly work with true
values of parameters and signals. For simplicity, we will not
use the dot accents here, unless confusion can arise.

We start by proving (34).

∂�T
k

∂ak
= ∂σ 2

α

∂ak

�T
k

σ 2
α

+ σ 2
α,k

∂

∂ak

(
aT

αOC,k
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−ν−1
k E

[
φk (s) · xT

k
ςk

])
C−∗αk
= σ 2

α,k

⎛⎜⎝ ∂
σ 2

α,k

ς2
k

∂ak
aT

k RT
k

+σ 2
α,k

ς2
k

RT
k − ν−1

k
∂

∂ak
E

[
φk (s) · xT

k
ςk

])
C−∗αk

, (86)

since �k = 0 for ak = ȧk and N →+∞. In further com-
putations, we use (67)–(70) and derive the following
identities:

∂
∂ak

σ 2
α,k

ς2
k
= σ 2

α,k

ς2
k

(w∗α,k − w∗αOC,k ), (87)

∂φk (s)
∂ak
= ∂φk

∂sk

(
∂sk
∂ak

1
ςk
− sk

ς2
k

∂ςk
∂ak

)
+ ∂φk

∂s∗k

(
∂s∗k
∂ak

1
ςk
− s∗k

ς2
k

∂ςk
∂ak

)
= − 1

2

(
∂φk
∂sk

sk
ςk
+ ∂φk

∂s∗k
s∗k
ςk

)
w∗αOC,k + σ 2

α,kC−∗
α,k

x∗k
ςk

∂φk
∂s∗k

,

(88)

∂
∂ak

xT
k

ςk
= (− 1

2 w∗αOC,k + w∗α,k

) xT
k

ςk
. (89)

For sk = ṡk and zk = żk , and ς2
k = ς̇2

k = σ̇ 2
k , we have the

identities that

E

[
s∗k
ςk

xT
k

ςk

∂φk
∂s∗k

∣∣∣
s=s

]
= ξkaT

k , (90)

E
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ςk

xT
k
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∂φk
∂sk
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]
= ηkaT

k , (91)

E
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xT
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]
= ξka∗k aT

k + ρk
C∗yk
σ 2

k

= ξka∗k aT
k + ρk

(
C∗xk
σ 2

k
− a∗k aT

k

)
, (92)

where Cyk = E[ykyH
k ], and we have used the fact that Cxk =

σ 2
k akaH

k + Cyk . Now, we compute the derivative of the expec-
tation value in (86). By using (88)-(92),

∂
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(− 1
2 w∗αOC,kaT

k + w∗α,kaT
k

)
= − ηk+ξk+νk

2 w∗αOC,kaT
k + (ξk + νk − ρk )w∗α,kaT

k

+ ρk
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k . (93)

By the assumptions of the statement and the assertions of
Lemma 1 and 2, wα,k = ẇk , wαOC,k = σ 2

α,kC−1
αk

ak = ẇk and

ς2
k = σ 2

k . Hence, by putting (87) and (93) into (86),
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By the condition (32), the latter term is zero and (34) follows.
Now, we continue by computing the second Hessian ma-

trix
∂�H

k
∂ak
=

[
∂�T

k
∂a∗k

]∗
, which can be easily done by using the

previous identities. By (86),
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(95)
where the derivative in the first term is the conjugate value
of (87), which is equal to zero as N →+∞. Hence, only the
second term in (95) should be computed, for which we use the
following identity:
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(96)
where we used (67)-(70) and (88). Next, we will use that

E

[
∂φk
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because Pyk = E[ykyT
k ] = 0 is the pseudo-covariance matrix

of yk , which is zero since yk are assumed to be circular Gaus-
sian. Using the latter two identities,

∂
∂a∗k

E

[
φk (s) · xT

k
ςk

]
= E

[
∂φk (s)
∂a∗k

xT
k

ςk

]
+ E

[
φk (s) ∂

∂a∗k
xT

k
ςk

]
= 1

2 (ηk − ξk )wαOC,kaT
k + νk

(− 1
2 wαOC,kaT

k + wα,kaT
k

)
= − ηk+ξk+νk

2 wαOC,kaT
k + (ηk + νk )wα,kaT

k , (98)

which we put into (95) and, for N →+∞, obtain

∂�T
k

∂a∗k
= ξk − ηk − νk

2νk
wkwT

k . (99)

Now, by (32), (35) follows.

Finally, to compute
∂�T

k
∂a�

where � �= k, we only need to find

the value of E

[
∂φk (s)
∂a�

xT
k

ςk

]
since all terms but φk (s) in �k are

independent of a�. By (88), it readily follows that

∂φk (s)
∂a�
= − 1

2

(
∂φk
∂s�

s�
ς�
+ ∂φ�

∂s∗
�

s∗
�

ς�

)
w∗αOC,� + σ 2

α,�C−∗
α,�

x∗
�

ς�

∂φ�

∂s∗
�
.

(100)
By the assumption of the statistical model, E[ykyH

� ] = 0.
Straightforward computation using that wα,� = wαOC,� = w�

gives

E

[
∂φk (s)
∂a�

xT
k

ςk

]
= 1

2 (ξ�,k − η�,k )w∗�aT
k (101)

By using (101),

∂�T
k

∂a�
= −ν−1

k σ 2
α,kE

[
∂φk (s)
∂a�

xT
k

ςk

]
C−∗αk
= 1

2
η�,k−ξ�,k

νk
w∗�wT

k ,

(102)
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and (36) follows from (33). Similar way it can be shown that

E

[
∂φk (s)
∂a∗

�

xT
k

ςk

]
= 1

2 (η�,k − ξ�,k )w�aT
k , (103)

hence

∂�T
k

∂a∗
�
= −ν−1

k σ 2
α,kE

[
∂φk (s)
∂a∗

�

xT
k

ςk

]
C−∗αk
= 1

2
ξ�,k−η�,k

νk
w�wT

k ,

(104)
which concludes the proof. �

APPENDIX D:
Provided that ak and wk form a couple of (estimates of) mix-
ing and separating vectors that satisfy the OC introduced in
Section III-C1, xk can always be written as

xk = ak wH
k xk︸ ︷︷ ︸
sk

+ (Id − akwH
k )xk︸ ︷︷ ︸

yk

(105)

where sk and yk are orthogonal. Therefore, Cxk can be written
as Cxk = σ 2

k akaH
k + Cyk where σ 2

k = wH
k Cxk w, and the rank

of Cyk is d − 1, because wH
k ak = 1 due to the distortionless

constraint, hence, (Id − akwH
k )ak = 0.

For any vector ak , the couple of vectors aαOC,k (ak ) and
wα,k (ak ) defined by (17) and (18), respectively, satisfy the
OC, as shown in Section III-D. Therefore, the matrix 1

ς2
k

Cxk −
aαOC,kaH

αOC,k , where ς2
k = wH

α,kCxk wα,k , has rank d − 1. �
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