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Pod vodárenskou věž́ı 4, P.O. Box 18, 182 08 Praha 8, Czech Republic,
tichavsk@utia.cas.cz,

3 Faculty of System Design, Tokyo Metropolitan University,
6-6 Asahigaoka, Hino-shi, Tokyo, 191-0065 Japan, onono@tmu.ac.jp

Abstract. We propose a new algorithm for Independent Component
Extraction that extracts one non-Gaussian component and is capable to
exploit the non-Gaussianity of background signals without decompos-
ing them into independent components. The algorithm is suitable for
situations when the signal to be extracted is determined through initial-
ization; it shows an extra stable convergence when the target component
is dominant. In simulations, the proposed method is compared with Nat-
ural Gradient and One-unit FastICA, and it yields improved results in
terms of the Signal-to-Interference ratio and the number of successful
extractions.
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1 Introduction

The Blind Source Extraction (BSE) problem where the goal is to extract one
particular component from a linear mixture

x = Au, (1)

has been a live topic for decades, also before the birth of Independent Component
Analysis (ICA) [3, 4, 7]. In the mixture, u and x are d× 1 vectors, respectively,

0 This work was supported by The Czech Science Foundation through Project
No. 17-00902S and partially supported by JSPS KAKENHI Grant Number
16H01735.
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of d original and mixed signals, and A is a d × d non-singular mixing matrix.
The components of u are assumed to be mutually independent. Let, without any
loss of generality, the desired component be u1, which will be referred to as SOI
(the source of interest); the other signals will be briefly called background.

By information theory, it is possible to extract an independent component
through finding a direction having minimum entropy (maximum non-Gaussianity).
However, methods extracting one non-Gaussian independent component in this
way (from here referred to as “one-unit” methods) are known to have a limited
asymptotic accuracy compared to methods performing the whole ICA decom-
position of (1). Performance analyses of several one-unit methods showed that
they perform as if background components were all Gaussian [5, 12, 14].

Specifically, let W be an unbiased estimate of A−1 (a de-mixing matrix)
up to the order and scales of its rows, and G = WA ≈ PΛ, where P and Λ
is, respectively, a permutation and a diagonal matrix. The Cramér-Rao bound
(CRLB) for ICA says that [14, 15]

E[G2
ij ] ≥

1

N

κj
κiκj − 1

, i 6= j, (2)

where E[·] stands for the expectation operator, N is the number of samples of
x (assuming identically and independently distributed samples), and κi = E[ψ2

i ]
where ψi(x) = −∂/∂x log pi(x), which is the score function of pi where pi is the
pdf of the ith original signal ui.

For normalized variables with unit variance it holds that κi ≥ 1 where κi = 1
if and only if the ith pdf is Gaussian. Let w be the first row of W corresponding
to the extracted SOI, and let u have all unit variance. The asymptotic accuracy
(for N → +∞) of one-unit methods (when the true score function is used in the
algorithm’s contrast function) was shown to be characterized by [5, 12, 14]

E[g2j ] ≈ 1

N

1

κ1 − 1
, j 6= 1, (3)

where g = wTA. The right-hand side coincides with the CRLB in (2) for i = 1
when κj = 1 for j = 2, . . . , d, which is the case when u2, . . . , ud are Gaussian
(for which case the CRLB (2) formally does not exist unless d = 2).

Recently, we have revised the BSE problem through Independent Component
Extraction (ICE) [10, 11]. Here, the mixing model (1) is re-parameterized for the
extraction of the SOI in the way that the rest of the mixture is not object of
any particular decomposition, as compared to ICA. In the statistical model,
s is assumed to be non-Gaussian while the other components are assumed to
be Gaussian. Under these conditions, the CRLB for ICE has been confirmed to
correspond to the right-hand side of (3); see [8]. In [10], orthogonally-constrained
gradient learning algorithms for ICE have been proposed based on the maximum
likelihood principle.4 An appealing property of these algorithms resides in their

4 A particular variant of these algorithms (OGICEw) coincides with a method pro-
posed earlier by Pham in [12], which was derived based on a simplified form of
mutual information that is valid for Gaussian background.
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ability to keep converging to the desired source, e.g., to a dominant SOI. Using
methods that guarantee the extraction of the SOI with a high probability, the
complete ICA decomposition and the subsequent component selection due to the
random order can be avoided, which brings significant computational savings.

In this paper, our goal is to overcome the accuracy limitation given by (3). We
derive a new gradient ICE algorithm using the maximum likelihood approach.
The method takes into account possible non-Gaussianity of background. For
simplicity, real-valued mixing scenario and signals will be considered, although
a complex-valued extension is possible.

The rest of this paper is organized as follows. The ICE mixing model and
the statistical model of signals are described in Section 2. In Section 3, the
novel algorithm is proposed and described in details. Section 4 is devoted to
simulations and comparisons, and Section 5 concludes the paper.

Notation: Plain letters denote scalars; bold letters denote vectors; bold capital
letters denote matrices. The Matlab convention for matrix/vector concatenation
and indexing will be used, e.g., [1; g] = [1, gT ]T , and (A)j,: is the jth row of
A. Symbolic scalar and vector random variables will be denoted by lower case
letters, e.g. s and x, z, while the quantities collecting their N samples will be
denoted by bold (capital) letters, e.g. s (a row vector 1×N) and X, Z. Estimated

values of signals will be denoted by hat, e.g., ŝ, Ẑ.

2 Problem Formulation

2.1 Algebraic Mixing Model

Let the SOI be s = u1 and a be the first column of A, so A can be partitioned
as A = [a, A2]. Then, x can be written as

x = as+ y, (4)

where y = A2u2 and u2 = [u2, . . . , ud]T . The fact that y = A2u2 means that
the mixture consists of the same number of sources as that of input channels.

Let the new parameterization of the mixing matrix and of its inverse matrix
be denoted by AICE and WICE, respectively. In ICE, the identification of A2 or
the decomposition of y into independent signals u2 is not the goal. Therefore, we
assume that AICE = [a, Q] where Q is, for now, arbitrary with full column-rank.
Then, (4) can be written as

x = AICEv, (5)

where v = [s; z], and y = Qz. Hence, the subspace spanned by z is the same
as that of u2. To complete the mixing matrix definition, we look at the inverse
matrix WICE = A−1

ICE.

Let a and WICE be partitioned, respectively, as a = [γ;g] and WICE =
[wT ; B]. B is required to be orthogonal to a, i.e. Ba = 0, which ensures that
Bx do not contain any contribution of s. A useful selection is B = [g,−γId−1]
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where Id denotes the d× d identity matrix. Let w be partitioned as w = [β;h].
Then,

WICE =

(
wT

B

)
=

(
β hT

g −γId−1

)
, (6)

and from AICE ·WICE = Id it follows that

AICE = [a, Q] =

(
γ hT

g
(
ghT − Id−1

)
γ−1

)
, (7)

where β and γ are linked through

βγ = 1− hTg. (8)

The latter equation can be also written in the form wTa = 1, which corre-
sponds to the distortionless response constraint [16]. The role of a, as follows
from (4), is the mixing vector related to s, while w is the separating vector as
s = wTx. For the background signal z, it holds that z = Bx = By = BA2u2.

Similarly to the indeterminacies in ICA, the scales of s and of a are ambiguous
in the sense that they can be replaced, respectively, by αs and α−1a where
α 6= 0. The scaling ambiguity can be avoided by fixing β or γ. Next, the role of
s = u1 can be interchanged with ui, for any i = 2, . . . , d. This is the permutation
problem [13].

In this paper, we assume that an initial guess of a or of w is given, which
determines the SOI. The initial value is typically deviated by an estimation
error, which increases the probability that the given algorithm finally extracts a
different source than the SOI. In experiments (Section 4), we therefore conduct
a sensitivity analysis, which compares the size of the attraction area of different
BSE algorithms.

2.2 Statistical Model

The main principle of ICE is the same as that of ICA. We take the assumption
that s and z are independent, so the goal is to find a and w such that wTx and
Bx are independent (or as independent as possible).

Let the pdf of s and of z be, respectively, ps(s) and pz(z). The joint pdf of
the mixed signals x = AICEv is

px(x) = ps(w
Tx) · pz(Bx) · | detWICE| (9)

where it can be shown that

detWICE = (−1)d−1γd−2 = (−1)d−1β−(d−2)(1− hTg)d−2. (10)

Since the background signals remain unmixed after ICE (up to special cases
such as d = 2), we proposed in [10, 11] to model the unknown pz as Gaussian
with zero mean and covariance Cz. In this paper, we generalize the background
model to arbitrary (non-)Gaussian pdf. Thus, the unknown densities ps(s) and
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pz(z) are replaced, respectively, by model densities f(s) and q(z). The quasi-
loglikelihood function for N i.i.d. signal samples, according to (9), takes the
form

L(a,w) =
1

N

N∑
n=1

{
log f(wTx(n)) + log q(Bx(n))

}
+ (d− 2) log |γ|. (11)

Orthogonal Constraint The first term on the right-hand side of (11) depends
purely on w, while the second and the third terms depend purely on a. The only
link between a and w thus resides in (8). Therefore, the likelihood function can
have spurious maxima where a and w do not correspond to the same source.

To make the interconnection between a and w tighter, the orthogonal con-
straint (OG) can be imposed [2]. Let WICE be a current ICE de-mixing matrix

estimate having the structure of (6), and V̂ = [̂s; Ẑ] = WICEX be the estimated
matrix of de-mixed signal samples. The OG reads

1

N
ŝ · ẐT =

1

N
wTXXTBT = wT ĈxB

T = 0, (12)

where Ĉx = XXT /N is the sample-based estimate of Cx = E[xxT ]. The reader
can verify that the OG together with (8) introduce the following links between
a and w:

a =
Ĉxw

wT Ĉxw
, (13a) w =

Ĉx

−1
a

aT Ĉx

−1
a
. (13b)

In this paper, we will consider the former coupling, that is, w will be the free
variable while a will be treated as dependent.

3 Gradient-based Algorithm

3.1 Gradient of the contrast function

The gradient of L with respect to w under the coupling (13a), is

∂L
∂w

∣∣∣∣
w.r.t. (13a)

= − 1

N
Xφ̂

T
+

1

N

Ĉx

wT Ĉxw

(
tr(EXΨ̂) + (d− 2)Nγ−1

−Ψ̂XTe1

)

+ 2a

(
1

N
tr(Ψ̂

T
Ẑ)− (d− 2)

)
, (14)

where tr(·) denotes the trace, E = [0, Id−1], e1 denotes the first column of Id,

φ̂ = φ(ŝ), and Ψ̂ = ψ(Ẑ), where

φ(ξ) = −∂ log f(ξ)

∂ξ
and ψi(z) = −∂ log q(z)

∂zi
, ψ(z) = [ψ1(z), . . . , ψd−1(z)]T ,

(15)
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are the score function of the model pdfs f(·) and q(·), respectively, which are
applied element/column-wise in case of the vector/matrix argument. We skip
details of the lengthy computation of (14) here due to the lack of space.

By exploring this gradient when N → +∞ and when w is the ideal separating
vector, that is, when wTx = s and Bx = z, an important fact can be shown:
The ideal separating vector is a stationary point of the contrast function (the
gradient is zero) only if φ and ψ satisfy E[sφ(s)] = 1 and E[zψ(z)T ] = Id−1,
respectively. Both conditions are automatically satisfied when φ and ψ are the
true score functions of the respective variables. However, since these are not
known in the blind scenario, we introduce the following normalizing conditions:
For any estimates of a and w, let

ŝφ̂
T

= N and ẐΨ̂
T

= NId−1. (16)

With these conditions and after few computations, (14) simplifies to

∂L
∂w

∣∣∣∣
w.r.t. (13a)

= a− 1

N
Xφ̂

T
+

1

wT Ĉxw
ĈxB

Tp, (17)

where p = Ψ̂ ŝT /N .
A practical way to select φ and ψ meeting the conditions in (16) is by taking

some appropriate prototype functions φ1 and ψ1 instead. Then, the normaliza-
tion can be done through defining

φ̂ = N(ŝφ̂
T

1 )−1φ̂1 and Ψ̂ = R−1Ψ̂1, (18)

where R = ẐΨ̂
T

1 /N , φ̂1 = φ1(ŝ), and Ψ̂1 = ψ1(Ẑ).
A special case that is worth to mention at this point is when the background

signals z are Gaussian, i.e., z ∼ N (0,Cz). The covariance Cz is an unknown
nuisance parameter, which must be replaced by the sample-based covariance of
Ẑ, that is, by Ĉz = ẐẐT /N . It means that the model density q(·) corresponds to

N (0, Ĉz), whose score function is ψ(z) = Ĉ−1
z z. Then, Ψ̂ = Ĉ−1

z Ẑ, R = Id−1,

and p = Ψ̂ ŝT /N = Ĉ−1
z ẐŝT /N = 0 due to the OG (12). Consequently, the third

term on the right-hand side of (17) is zero, and the gradient simplifies to

∂L
∂w

∣∣∣∣
w.r.t. (13a)

= a− 1

N
Xφ̂

T
. (19)

This result coincides with those derived in [10, 12] under the Gaussian assump-
tion.

The third term on the right-hand side of (17) can be seen as a correction
term due to the non-Gaussianity of z, as p consists of higher-order correlations
between ŝ and Ẑ, unless ψ is purely linear.

3.2 Proposed Algorithm

We propose a gradient-based algorithm whose steps are described in Algorithm 1.
In every step, the OG is imposed through (13a), the normalization steps given
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by (18) are done, and the method updates w in the direction of the steepest
ascent of L. This is repeated until the norm of the gradient is smaller than tol;
µ is the step length parameter; wini is the initial guess. We call this method
OGICENGB.

Algorithm 1: OGICENGB: separating vector estimation based on orthog-
onally constrained gradient-ascent algorithm

Input: X, wini, µ, tol, φ(·), ψ(·)
Output: a,w

1 Ĉx = XXT /N ;
2 w = wini;
3 repeat

4 λw ← (wT Ĉxw)−1;

5 a← λwĈxw; /* OG constraint (13a) */

6 B = [a2:d, −a1Id−1]; /* by (6) */

7 ŝ← wTX; /* current SOI estimate */

8 Ẑ← BX; /* current background estimate */

9 ν ← ŝφ(ŝ)T /N ; /* normalizing constant from (18) */

10 T← Xψ(Ẑ)T /N ; /* auxiliary matrix due to (18) */

11 p = (BT)−1TTw; /* by the definition of p */

12 ∆← a− ν−1Xφ(ŝ)T /N + λ−1
w ĈxB

Tp; /* by (17) */

13 w← w + µ∆; /* gradient ascent */

14 until ‖∆‖ < tol;

4 Simulations

We compare OGICENGB with its special variant OGICE (assuming Gaussian
background) [10, 12], with One-unit FastICA (FICA) from [6], and with the
Natural Gradient algorithm (NG) for ICA [1]. In one trial, an instantaneous
mixture of d = 10 signals is generated according to (1), and the SOI is extracted
and evaluated in terms of Signal-to-Interference Ratio (SIR). The SOI u1 as well
as u2, . . . , ud are drawn from the Laplacean distribution. The scales of the com-
ponents are selected so that SIRin = (d − 1)E[|u1|2](

∑d
i=2 E[|ui|2])−1 is 10 dB.

The elements of mixing matrices are drawn uniformly from [1, 2], which ensures
approximately equal SIR across all channels. The improvement of SIR (SIRimp)
is defined as the ratio between the average SIR on channels and the output SIR
of the extracted source; the extraction is rated as successful if SIRimp > 0 dB.
The percentage of successful trials will be referred to as success rate.

The algorithms are initialized by aini = a + eini, where a is the true mixing
vector, and eini is a random vector with Gaussian entries such that ‖eini‖2 = ε2.
NG is initialized by a de-mixing matrix yielding background subspace that is
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Fig. 1. Success rate and median SIR improvement as functions of ε2 achieved by the
compared algorithms in 100 trials for N = 100 (row 1) and N = 1000 (row 2).

orthogonal to the initial SOI estimate5. To compare, the SOI estimates using
(13b) with the true mixing vector (MPDR oracle) and with a = aini (MPDR ini)
are evaluated, also.

In algorithms, we choose φ(s) = tanh(s), which is a smooth approximation of
sign(x) (the true score function for the Laplacean pdf). For choosing ψ in OGI-
CENGB, we adopt the idea from [9] for modeling dependent variables using the
multivariate super-Gaussian distribution with covariance Cz. Thus, the model
pdf and the corresponding score function are, respectively,

q(z) ∝ exp
{
−
√
zTC−1

z z
}

and ψ(z) = C−1
z z/

√
zTC−1

z z. (20)

5 Note that the separated sources by NG are not reordered after the separation, be-
cause the BSE problem is assumed to be resolved correctly only if the SOI appears
in the assumed output channel.
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Based on this, our final choice of ψ is ψ(z) = Ĉ−1
z z/

√
zT Ĉ−1

z z where Ĉz is the

sample-based estimate of Cz, namely, Ĉz = ẐẐT /N = BĈxB
T . The problem

of choosing more appropriate nonlinearities, especially ψ, is beyond the scope of
this paper.

For all algorithms, the maximum number of iterations is 50000; the stopping
criterion is tol = 10−4 for OGICE and OGICENGB, 10−3 for NG and 10−6 for
FICA. The step length µ was set to 0.1; 0.02 in NG; these values were selected
to ensure good performance of the methods.

Fig 1 shows the success rate and median SIRimp achieved in 100 trials when
the number of samples is, respectively, critical (N = 100) and moderate (N =
1000). A performance bound is given by MPDR oracle, which yields 100% success
rate and 10 dB (resp. 22 dB) of median SIRimp for every ε2.

For N = 100 (row 1 in Fig 1), NG and FICA fail to improve the initial median
SIR given by MPDR ini. By contrast, OGICE and OGICENGB show higher
success rate and median SIRimp than MPDR ini when ε2 > 0.001. OGICENGB
yields significant improvements compared to OGICE, which points to its ability
to exploit the non-Gaussianity of background.

The median SIRimp for N = 1000 (row 2, column 2 in Fig 1) shows that the
accuracy of NG and FICA is superior provided that they are initialized in a very
close vicinity of the SOI (ε2 ≤ 0.01). Here, OGICE achieves similar SIRimp to
that of FICA, OGICENGB gives slightly higher SIRimp than OGICE and FICA,
and NG outperforms the other methods. This is in a good agreement with the
theory as NG exploits the nonGaussianity of background through separating all
sources, while OGICENGB performs only a partial separation. For ε2 > 0.1, the
median SIRimp of NG and FICA drops below −20 dB, which means that these
algorithms mostly converge to a different source (in more than 50% of trials).

The ICE methods show superior global convergence (success rate), which is
almost independent of ε2. Other simulations not shown here due to lack of space
confirm that the global convergence of these algorithms is related to the fact
that the SOI is significantly dominant in the mixture. The practical use of this
interesting property will be subject of further investigations.

5 Conclusions and Future Works

We have shown that OGICENGB can achieve higher separation accuracy than
OGICE and One-unit FastICA that assume Gaussian background. The algo-
rithm shows excellent global convergence similarly to OGICE when the SOI is
dominant, also in the scenario with a small number of samples (N = 100).

Open issues are the choice of a more suitable nonlinearity ψ(·), which might
improve the accuracy of OGICENGB, and a faster optimization strategy like that
of FastICA, which could considerably increase the convergence speed. Finally,
the idea of this paper can be extended to the extraction of a vector component
from a set of dependent instantaneous mixtures as an analogy to Independent
Vector Analysis; see [9, 10].
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