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ABSTRACT
We propose a novel solution to the blind speech separation
problem where the de-mixing transform is estimated only
within selected frequency bins. This solution is based on
Independent Vector Analysis applied to a subset of instanta-
neous mixtures, one per selected frequency bin. Next, two
approaches are proposed to complete the transform: one
based on null beamforming, and the other based on con-
vex programming. In subsequent experiments, we compare
combinations of both methods and evaluate their ability to
retrieve the whole de-mixing transform. Depending on the
number of selected frequencies and the sparsity of room im-
pulse responses, the methods show improvements in terms of
computational complexity as well as in terms of separation
accuracy.

Index Terms— Blind Source Separation, Independent
Vector Analysis, Relative Transfer Function, Sparse Recon-
struction, Convex Optimization

1. INTRODUCTION

Spatial acoustic sources are observed on microphones as mix-
tures of signals that are convolved with acoustic room impulse
responses (RIR). Frequency-Domain Blind Source Separation
(FDBSS) applies the short-term Fourier transform (STFT) to
the mixed signals and treats them as linear instantaneous mix-
tures, i.e., one mixture per frequency bin [1, 2]. Our goal is to
find a linear de-mixing transform that separates a given mix-
ture into the original signals using minimum prior knowledge
about the RIRs. The most popular method is Independent
Component Analysis, which assumes that the original signals
are independent [3].
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This conference paper addresses the basic mixture prob-
lem: two sources observed by two microphones, although
the ideas could be generalized to more sources and micro-
phones. A 2×2 mixture can be, in the STFT domain, de-
scribed through

X1(k, `) = H11(k)S1(k, `) +H12(k)S2(k, `),

X2(k, `) = H21(k)S1(k, `) +H22(k)S2(k, `),
(1)

where k = 1, . . . ,K and ` = 1, . . . , N denote, respectively,
the frequency and the frame index; K is the length of the
Discrete Fourier Transform (DFT); N is the number of STFT
frames; X1 and X2 denote signals observed on microphones;
S1 and S2 denote the original signals; and Hij are the trans-
fer functions corresponding to the RIRs. In the vector-matrix
form, (1) can be re-written as X(k, `) = H(k)S(k, `), where
{H(k)}ij = Hij(k), X(k, `) = [X1(k, `), X2(k, `)]

T , and
S(k, `) = [S1(k, `), S2(k, `)]

T .
A de-mixing matrix W(k) is defined such that

Y(k, `) = W(k)X(k, `) = G(k)S(k, `), (2)

where G(k) = P(k)D(k) with P(k) and D(k) being, re-
spectively, a permutation and a diagonal matrix. We will re-
fer to the de-mixing transform as to the full set of de-mixing
matrices W(k), k = 1, . . . ,K, and we will denote it by W.

The uncertainties represented by P(k) and D(k) are
known in FDBSS, respectively, as the permutation problem
and the scaling ambiguity. The permutation problem must
be resolved for separating the signals in the time domain [4].
The Minimal Distortion Principle (MDP) is a popular ap-
proach to cope with the scaling ambiguity [5]. It reconstructs
the separated sources as they are observed on microphones.

FDBSS can be solved by means of Independent Vector
Analysis (IVA) where the signals are separated by restoring
their independence as with ICA, but the goal here is to also
preserve the inter-frequency dependencies. This simultane-
ously solves the permutation problem [6].



In this paper, we propose to improve the efficiency of IVA
by estimating the de-mixing matrices only within selected fre-
quency bins, which yields a de-mixing transform that is in-
complete. The primary goal is to lower the computational bur-
den with as little loss as possible in separation performance.
Speech signals obey sparsity in the frequency domain. It is
therefore economical to separate only the active frequencies
of the signals.

The secondary goal is to recover the unknown part of the
de-mixing transform, which can be useful for the separation
of future intervals of the signals, for which the active frequen-
cies can be different. We propose two methods to do so. A
simple one is based on the knowledge of time-differences of
arrivals (TDOA) of the original signals. The unknown part
of the de-mixing transform is completed by null beamform-
ers; see a related work on the combination of beamforming
with ICA [7]. The second approach interprets any de-mixing
transform as two relative transfer functions (RTFs). Incom-
plete RTFs are reconstructed through finding their sparsest
representations in the time domain, which is motivated by the
fact that typical relative impulse responses obey approximate
sparsity or compressibility; see [8].

The following section introduces the incomplete solution
of the 2 × 2 FDBSS problem by means of IVA. Section 3
describes the two methods for reconstructing the entire de-
mixing transform from its incomplete estimate. Sections 4
and 5 present our experiments and conclude the paper.

2. INCOMPLETE FREQUENCY-DOMAIN BSS

2.1. Equivalence between source separation and source
suppression in the 2×2 case

In the 2×2 scenario, the task of separating a source is equiv-
alent to that of suppressing the other source. Therefore, any
de-mixing transform can be interpreted through two relative
transfer functions (RTF) related to the sources, and vice versa.

Specifically, the RTF related to the ith source is defined
as

HRTF,i(k) =
H2i(k)

H1i(k)
. (3)

Many methods for estimating the RTF from noise-free or
noisy data exist, including those based on BSS; see, e.g.,
[8, 12, 13, 14]. Let us define W as

W(k) =

(
HRTF,2(k) −1
HRTF,1(k) −1

)
. (4)

This W satisfies definition (2) of a de-mixing transform
where G = diag(H11HRTF,2 − H21, H12HRTF,1 − H22);
diag(·) denotes a diagonal matrix with the argument on its
diagonal.

By contrast, any de-mixing matrix W(k) can be re-
scaled, i.e., multiplied by a regular diagonal matrix. Let
Λ(k) = diag(−1/W12(k),−1/W22(k)). It can be verified
that if W(k) is de-mixing then Λ(k)W(k) is equal to (4).

2.2. Independent Vector Analysis

The classical solution of FDBSS applies ICA to each mixture
X(k, `) = H(k)S(k, `) in parallel, by which de-mixing ma-
trices W(k), k = 1, . . . ,K, are estimated. Then the permu-
tation problem must be solved to form the whole de-mixing
transform; see, e.g., [4, 7, 9, 10].

Independent Vector Analysis solves the estimation and
permutation problem simultaneously [6]. It assumes a joint
probabilistic model where the frequency components belong-
ing to the same source are mutually dependent. The de-
mixing transform is found through minimizing the Kullback-
Leibler divergence between the joint probability function and
the product of probability densities of vectors where each vec-
tor contains the frequency components of the corresponding
source.

The natural gradient learning rule [11] for the ijth element
of W(k) reads

Wij(k)←Wij(k)+

µ

2∑
`=1

(
δi` − E[φk(yi(1), . . . , yi(K))y`(k)]

)
W`j(k) (5)

where δ denotes the Kronecker delta, E[·] stands for the ex-
pectation operator, µ is a step-length parameter, yi(k) denotes
a random variable modeling the kth frequency component of
the ith separated source, and φk(·) is the multivariate score
function following from the model for the joint probabilis-
tic density of frequency components of a source. We use the
choice from [6] where

φk(yi(1), . . . , yi(K)) =
yi(k)√∑K
r=1 |yi(r)|2

. (6)

In experiments, we choose µ = 0.05 and perform a fixed
number of iterations, namely, 50.

2.3. Estimation of Incomplete De-Mixing Transform

Various natural signals, especially speech, exhibit sparsity
in the frequency-domain. The observed signals X(k, `) =
H(k)S(k, `) are dominated by a noise (although the noise
term is not explicitly written in the model) when S(k, `) have
negligible amplitudes. For such frequencies, the observed
data provide little information for estimating the de-mixing
matrix.

We propose omitting such frequencies and estimating
W(k) only for k ∈ S ⊆ {1, . . . ,K}. A possible solution
would be to apply ICA, and perform a permutation correction
[4]. Nevertheless, we propose to apply IVA as in [6] but
only on a subset of all frequencies. The modification of the
above-described algorithm is straightforward: In (5), as well
as in (6), k is only allowed to take on the values from S (as
well as the index r in (6)). It follows that the computational



complexity of this modification is O(|S|) where |S| denotes
the number of elements in S.

3. DE-MIXING TRANSFORM COMPLETION

For k /∈ S , the de-mixing matrices W(k) could be put equal
to zero because of “small” signals’ activity within the respec-
tive frequency bins. Such a solution would be practical due
to a negligible computational burden. However, in an on-line
or batch processing regime, the frequencies can be active in
future frames. This motivates us to find more sophisticated
ways for completing the de-mixing transform.

3.1. Null Beamforming using TDOAs

A simple method proceeds by putting the rows of W(k),
k /∈ S, equal to null beamformers where each row steers the
spatial null towards a source. Compared to (4), which cannot
be used since HRTF,2(k) and HRTF,1(k) are not known, the
choice is

W(k) =

(
e−2πiτ2(k−1)/K −1
e−2πiτ1(k−1)/K −1

)
(7)

where τ1 and τ2 denote the TDOAs of the first and second
source, respectively.

The TDOAs can be estimated from incomplete RTFs [15].
Since the TDOAs are important for efficient initialization of
the learning algorithm (5), we assume that their estimates
have already been given before applying the IVA and can be
used in (7).

3.2. Sparse RTF reconstruction

By being re-scaled, the estimated de-mixing matrices W(k),
k ∈ S get the form (4), by which two incomplete RTFs are
given. The completion of the de-mixing transform is thus
equivalent to the completion of the RTFs. Here we suggest
performing the latter through finding the sparsest representa-
tions of the incomplete RTFs in the time domain, which was
first proposed in [8]. This approach is justified by the fact that
the relative impulse response related to the RTF is typically
a fast decaying sequence, so it is compressible or approxi-
mately sparse.

For a brief description of the method from [8], let Y be a
|S| × 1 vector collecting the elements of an incomplete RTF
HRTF. Its jth element is

Yj = HRTF(kj), kj ∈ S, (8)

where S = {k1, . . . , k|S|} ⊂ {1, . . . ,K}.
Finding the sparsest representation of Y in the time do-

main is a combinatorial problem, which can be solved through
convex relaxation. Here, we use the LASSO formulation [16]

ĤRTF = argmin
H
‖HS −Y‖2 + ε‖FHH‖1 (9)

where ε > 0 controls the sparsity of the solution, F is theK×
K unitary matrix of the DFT, and the subscript (·)S denotes a
vector/matrix with selected elements/rows whose indices are
in S . To find the solution of (9), we use the fast proximal
algorithm proposed in [8], whose complexity is O(K logK)
per iteration1.

For more advanced formulations of the optimization prob-
lem see, e.g., [17, 18].

4. EXPERIMENTS

An experiment with two speech recordings was performed
where one recording is a male utterance and the other is a
female utterance2. Both signals have 10 seconds in length;
the sampling frequency is 16 kHz. Signals are processed in
the STFT domain with the DFT length of 1024 samples and
hop-size 128.

A stereo mixture of these signals was simulated using the
room impulse response generator3. A room 5×4×3 m in size
was considered, with a reverberation time of T60 = 360 ms.
The speakers were located in the center of the room. Both
were one meter distant from two microphones, respectively,
at angles of -60◦ and 60◦. The distance between the micro-
phones was 3 cm.

The signals were convolved with the RIRs and mixed
together; the initial signal-to-interference ratio (SIR) was
±0.8 dB. An auxiliary mixture was generated in the same
scenario but as if both source signals were white Gaussian se-
quences; the purpose of this mixture is to evaluate de-mixing
transforms with signals that uniformly excite the whole fre-
quency range (the blind estimation will not be performed with
this mixture).

“Oracle” estimates of the RTFs related to the speakers
were computed using the conventional least-squares estima-
tor applied to the responses of the Gaussian sequences. Then,
the RTFs were used to construct an “oracle” de-mixing trans-
form through (4).

The modified IVA was applied to the mixture of speech
signals to estimate the (incomplete) de-mixing transform.
First, the percentage p of the most active frequencies within
the signal mixture (on average over both channels) was cho-
sen, whereby the set S was selected; p will be referred to as
percentage. Second, the modified IVA is applied where (7) is
the initialization. Note that, for p = 100, the IVA coincides
with the original method from [6], here denoted as “cIVA”.

When p < 100, the resulting de-mixing transform is com-
pleted using the two approaches introduced in Section 3. The
one based on estimated TDOAs will be denoted as “TDOA”.

1A Matlab implementation of the algorithm is available at
http://itakura.ite.tul.cz/zbynek/dwnld/SpaRIR.m.

2The recordings are taken from SiSEC 2011, task “Underdetermined-
speech and music mixtures,” http://sisec2011.wiki.irisa.fr.

3https://www.audiolabs-erlangen.de/fau/professor/
habets/software/rir-generator
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(a) RIR order=1, speech (b) RIR order=1, white noise
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(c) RIR order=10, speech (d) RIR order=10, white noise

Fig. 1. SIR improvement averaged over both separated sources and channels. The acronym A/B means that method A was
used to obtain (incomplete) de-mixing transform, while method B was used to complete it. “NB” denotes the performance of
null beamforming (independent of p).

Note that for p = 0, the matrix completed by TDOA co-
incides with null beamforming, which is denoted by “NB”.
The method based on the sparse reconstruction will be re-
ferred to as “LASSO”; in the experiments, (9) is computed
with ε = 0.05.

After completing the de-mixing transform, the micro-
phone responses of the separated sources are computed and
transformed back to the time domain. SIR is evaluated on
each channel and the average is taken. Note that this evalua-
tion is, for each de-mixing transform, performed twice: once
with the speech mixture, and separately with the Gaussian
mixture.

The RIR-generator enables us to select the reflection order
of the room. For order = 1, the generated RIRs (and also
the respective relative impulse responses) are sparse, so they
obey the principal assumption of LASSO. By contrast, when
the order is 10, the RIRs contain thousands of reflections and
simulate more realistic RIRs.

4.1. Results

Improvements of SIR achieved by several combinations of
methods and for the two choices of the reflection-order num-
ber are shown in Figures 1(a) through 1(d). The first column

corresponds to the evaluation performed on the mixture of
speech signals, while the second column corresponds to the
white noise evaluation.

Let us mention some important facts: For p = 100, IVA
coincides with cIVA. The methods to complete the de-mixing
transform are not applied in this case, so, e.g., IVA/LASSO
and IVA/TDOA coincide, etc. The best performance is pro-
vided by the oracle method, then IVA and NB. For p below
a critical value between 20-30% and, especially, for p close
to 0, LASSO fails while TDOA approaches NB. We shall not
discuss results for p below the critical value in the rest of this
text.

Now, the discussion must be performed separately for the
results evaluated on the speech and white noise signals. We
begin with the former results (Figures 1(a) and 1(c)).

Here, oracle/LASSO achieves better SIR than oracle/TDOA
when p is between 30 and 80 (Fig. 1(a)), but only when the
reflection order is 1. The differences between IVA/LASSO
and IVA/TDOA are negligible. This follows from the fact
that the de-mixing transform is already well identified within
the active frequencies of speech, so the SIR cannot be much
improved through completing the de-mixing transform.

A positive observation is that an incomplete IVA is
slightly improving with decreasing p (until p ≈ 30). Both



IVA/LASSO and IVA/TDOA outperform cIVA/TDOA for
p < 100. cIVA thus appears to be inefficient compared to
incomplete IVA when p is sufficiently high, both in terms of
speed and accuracy.

The SIR achieved with the white Gaussian signals (Fig-
ures 1(b) and 1(d)) evaluate the whole de-mixing trans-
form (after completion) uniformly on the whole frequency
range. Here, the SIR values achieved by oracle/LASSO and
IVA/LASSO when p is between 30% and 90% are signifi-
cantly better compared to those obtained when TDOA is used
instead of LASSO. This phenomenon is more distinctly seen
in Fig. 1(b) where the RIRs are more sparse. The differences
are lower in Fig. 1(d) where the reflection order is 10. In the
latter case, IVA outperforms cIVA as well.

5. CONCLUSIONS

We have shown advantageous properties of FDBSS when per-
formed via incomplete IVA using the natural gradient algo-
rithm. Namely, the computational burden is lower as it grows
linearly with p, while the achieved SIR could be even slightly
higher provided that p is higher than the critical value. This
value could be chosen based on the number of active fre-
quency bins. Results of our experiments are indicative of the
fact that LASSO is able to gain some information about de-
mixing matrices outside the active frequencies, depending on
the sparsity of the RIRs.

A comprehensive comparison of the proposed concept in
combination with other BSS methods will be a subject of our
future work.
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