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Abstract

Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in

many signal processing applications. Efficient FastICA (EFICA) offers an asymptotically optimal solution to this

problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and

each is independent and identically distributed (i.i.d.) in time. Likewise, Weights-Adjusted Second Order Blind

Identification (WASOBI) is asymptotically optimal when all the sources are Gaussian and can be modeled as

Autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both

Gaussian AR and non-Gaussian i.i.d. sources, rendering WASOBI and EFICA severely sub-optimal. In this paper

we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid

mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar

mixtures.

Index Terms —blind source separation, independent component analysis

I. I NTRODUCTION

We address the classical real-valued square (invertible) instantaneous linear Independent Components

Analysis (ICA) modelx = As, wheres,x ∈ Rd×N contain thed unknown independent source signals and

their observed mixtures (respectively), each of lengthN , andA ∈ Rd×d is the unknown mixing matrix.
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The goal is to estimate the mixing matrixA or, equivalently, the de-mixing matrixW
4
= A−1 or,

equivalently, the original source signalss. We employ an assumption of zero-mean unit variance sources,

and we assume for simplicity of the exposition that the remaining permutation ambiguity can be arbitrated

(e.g., using the re-ordering method proposed in [25], which is also used in our simulations).

At least three classes of source models have been considered in the literature (see, e.g., [5]) with

associated separation approaches based on either “non-Gaussianity”, “non-whiteness” or “non-stationarity”

of the source signals1. For each of these models there exist algorithms which are asymptotically optimal

(in some sense, to be discussed shortly) under certain conditions: 1) Efficient Fast-ICA (EFICA, [18])

for independent white generalized-Gaussian-distributed sources, 2) Weights-Adjusted SOBI (WASOBI,

[33], [9], [28]) for wide sense stationary (WSS) parametric Gaussian sources withspectral diversity,

and 3) Block Gaussian Likelihood (BGL, [22]) for Gaussian sources withtime-varying variances. Note

that EFICA is a recently developed modification of the popular FastICA [13]. A speed enhancement of

FastICA/EFICA using rational nonlinear functions (used in this paper) was proposed in [30]. The WASOBI

is an enhanced version of the popular algorithm SOBI [2].

Often in cases of real-data processing, no single model of these three classes offers a correct

representation of all sources. For example, in biomedicine, both non-Gaussianity-based and spectral

diversity-based blind separation methods are currently studied, see [16], [27]. Merits in combining these

two kinds of methods were already demonstrated on an example with an EEG data in [12].

The aim of this paper is to develop a method that can account for a combination of the first two model-

classes, by combining the strengths of EFICA and WASOBI. There is no claim of inherited asymptotic

optimality of the resulting algorithm. However, simulations show that our approach outperforms previous

attempts to address combinations of those two source classes, namely the algorithms JADETD [23],

JCC [12], and Thin ICA (TICA, [6]). Another,ad hocalgorithm, addressing combinations ofall three

classes, was proposed by Hyvärinen in [15], an extension of a Complexity Pursuit algorithm [14].

Unfortunately, however, this algorithm was not developed in sufficient generality. In particular, the

implementation that is available so far is only suitable to separatefirst-order autoregressive (AR) sources.

With certain parametrization of such first-order AR sources, Hyvärinen’s algorithm has been observed (in

our simulations) to outperform our proposed algorithm.

A previous, more basic method for combining EFICA and WASOBI was recently presented (by us)

in [29]. As explained in the sequel, the algorithm presented in here considerably enhances that method

by properly accounting for multidimensional independent components within the observed mixtures [1],

1This terminology is quite “loose”: for instance, the essence of the “non-whiteness” property should better be termed “spectral diversity”:

Note that colored sources cannot be separated using second-order statistics blindly, unless their spectra are distinct.
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[3], [7]. Note that unlike [1], [3], [7], we do not consider multicomponents associated with dependent

sources, but only linear mixtures of independent sources which either EFICA or WASOBI fails to separate

properly.

The key to successful combination of the two methods lies with the ability to predict (estimate) their

resulting performance from their outputs. This information can in turn be used for successive data-adaptive

“matching” of each algorithm to the subset(s) of sources for which it outperforms the other. To elaborate,

we briefly address the issue of performance assessment in the next section. In section III we provide

a brief overview of the “building blocks” of the algorithm, which is outlined in section IV. Extensive

simulation results are presented in Section V, and some conclusions are drawn in Section VI.

II. OUTPUT-BASED PERFORMANCEASSESSMENT

A common measure for evaluating the separation accuracy is the interference-to-signal ratio (ISR). For

a given estimate of the de-mixing matrix̂W, the “realization-ISR” matrixrISR is given (element-wise)

by rISRk` = G2
k`/G

2
kk, whereG

4
= ŴA. The total “realization-ISR” of thek-th estimated signal can

also be defined asrisrk
4
=

∑d
`=1,` 6=k rISRk`. Naturally, evaluation of both requires knowledge of the true

mixing matrix A, which is normally unavailable (except in simulations).

If the signal separation experiment is repeated in a Monte-Carlo fashion, a general key-property of any

separation algorithm is its “mean-ISR” (or simply its “ISR” for short), given by the expected value of its

“realization-ISR”,ISR
4
= E[rISR] (with a similar definition for theisr vector). ThisISR depends, in

general, on the statistical model of the data generating process.

For some algorithms, the ISR can be determined by analysis, and thanks to the well-known equivariance

property (e.g., [4]), this ISR usually does not depend on the unknownA, but only on statistical properties

of the sources, which, although unknown as well, may sometimes be estimated empirically from the

separated (estimated) sources.

The ability to assess the ISR of an algorithm from simple empirical estimates of statistical properties

of its outputs is a desirable but rare feature, shared by very few ICA algorithms. Fortunately, both EFICA

and WASOBI do share that attractive feature, which will prove instrumental in the sequel.

Moreover, as we shall show in simulation, the validity of the mean ISR estimates for both EFICA and

WASOBI is maintained even when the data generating process is somewhat modified. In particular, it will

be shown that

• The EFICA ISR expression, derived assuming temporally-white sources, remains approximately valid

when the sources are mildly colored. Likewise:

• The WASOBI ISR expression, derived assuming Gaussian AR sources, remains approximately valid
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when the Gaussian driving-noise is replaced with non-Gaussian noise, as long as the AR coefficients

(namely, the spectral shapes of the sources) are maintained.

A partial intuitive explanation may be that EFICA is based only on the marginal distributions of the

sources, ignoring any time-structures, whereas WASOBI is based only on second-order statistics, ignoring

any higher-order statistical information. We elaborate on this issue in the following section.

In addition, note the following arguments supporting the idea of the output performance assessment,

even for poorly-separated sources.

When EFICA fails to separate some of the sources, they remain mixed together and the mixtures’

probability distributions would usually be close to Gaussian, thanks to the central limit theorem (because

each unseparated observation would still be a linear combination of several independent inputs). As a

result, the estimate of the EFICA mean-isr would be relatively high, as the true mean-isr of EFICA is

well-known to be high for sources with nearly Gaussian distributions.

Similarly, when WASOBI fails to separate some of the sources, if the remaining mixtures are poorly

separated, they are prone to have fairly similar spectra (some kind of slightly differently-weighted

”average” spectra of the sources involved). As a result, the estimate of the WASOBI mean-isr would

be high, as the true mean-isr of WASOBI is well-known to be high for sources with nearly similar

spectra.

Admittedly, these arguments cannot be regarded as rigorous justification of our claim. However they

indicate that the general trend of the estimated mean-isrs can usually be expected to conform with the

true situation, even when the separation is poor.

III. B UILDING BLOCKS

In this section we briefly describe the essential building blocks of the proposed algorithm. These building

blocks are the EFICA and WASOBI separation algorithms, as well as a previously proposed, more basic

combination scheme.

The Craḿer-Rao Lower Bound (CRLB) on the (unbiased) estimation ofW induces a different type of

lower bound (see, e.g., [11]) on the attainable ISR, in the form of an ISR-like matrix with element-wise

bounds. We would refer to that bound as the “Cramér-Rao-Induced Bound” (CRIB). A separation algorithm

is said to be “optimal” (for a specified mixing model) when its ISR matrix equals the respective CRIB.

Both EFICA and WASOBI have been shown to be asymptotically optimal (under some mild conditions)

for their respective model-classes [18], [9].
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A. EFICA

EFICA is essentially a modification of the popular FastICA algorithm [13], belonging to a wide family of

ICA algorithms which exploit non-Gaussianity of the sources’ distributions (ignoring any time-structure).

In its general form, FastICA requires a user-defined choice of a set of nonlinear functionsgk(·) (k =

1, 2, . . . , d) for extracting each of thed sources. EFICA enhances FastICA by offering an elaborate data-

adaptive choice of these nonlinearities, followed by a refinement step.

Under the assumption that each rowsk (k = 1, . . . , d) of s containsN independent realizations of

non-Gaussian2 random variablesξk, it is shown in [18] that the asymptotic ISR matrix has as elements

ISRk` =
1

N

γk(γ` + τ 2
` )

τ 2
` γk + τ 2

k (γ` + τ 2
` )

(1)

where

γk = βk − µ2
k

τk = |µk − ρk|

µk = E[ξkgk(ξk)]

ρk = E[g′k(ξk)]

βk = E[g2
k(ξk)]

and whereE[·] denotes the expectation operator andg′k(·) denotes the derivative ofgk(·). In the best

possible case, obtained by EFICA for sources with Generalized Gaussian distributions, (1) equals the

respective CRIB [26].

B. WASOBI

WASOBI [33], [9], [28] is a weighted version of the well-known SOBI [2] algorithm, belonging to a

wide family of second-order-statistics based ICA algorithms, which rely on time-structures in the sources’

correlations. Both SOBI and WASOBI are based on approximate joint diagonalization (AJD) of several

(sayM ) time-lagged estimated correlation matrices,

R̂x[τ ] =
1

N − τ

N−τ∑
n=1

x[n]xT [n + τ ] τ = 0, . . . ,M − 1, (2)

wherex[n] denotes then-th column ofx.

Unlike SOBI, WASOBI incorporates proper weighting (inversely proportional to the covariance in the

correlation estimates) into the AJD process. The weighting is asymptotically optimal for the case of

Gaussian sources.

In particular, if all sources are Gaussian AR of orderM − 1, then under asymptotic conditions the ISR

matrix attained by WASOBI can be shown to equal the respective CRIB [11],

ISRk` =
1

N

φk`

φk`φ`k − 1

σ2
kR`[0]

σ2
` Rk[0]

(3)

2To be precise, at most one of the random variables is allowed to be Gaussian.
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whereσ2
k is the variance of the innovation sequence of thek-th source, andφk` are given by

φk` =
1

σ2
k

M−1∑
i,j=0

ai`aj`Rk[i− j],

where{ai`}M−1
i=0 are the AR coefficients of thè−th source witha0` = 1 for k, ` = 1, . . . , d, andRk[m] is

the autocorrelation of thek-th source at time lagm (we use a unit-variance scaling assumptionRk[0] =

R`[0] = 1 in our model).

C. COMBI

An intuitively appealing selection approach would be to apply both EFICA and WASOBI tox and

select for each source the reconstructed version that has the best total realization-ISR of the two. This

basic selection approach can then be turned into a successive scheme, such that in each iteration only

the “best” separated sources are “accepted”, and the remaining signals (which are still weakly-separated

mixtures of the remaining sources) are subjected to an additional iteration of separation and selection.

The “realization-ISR” matrices are obviously unknown (nor can they be consistently estimated from

the data). However, it is possible to substitute these with the “mean-ISRs”, thereby attaining a selection

strategy which implies proper selection “on the average”. Consistent estimates of the mean-ISR matrices

ÎSR
EF

andÎSR
WA

for both EFICA and WASOBI can indeed be obtained from (1) and (3) (respectively),

by substituting the true sources with the estimated sources and the true expectations with the empirical

means. Then, all individualisrs estimatesîsr
EF

k and îsr
WA

k (for all k) can be extracted from these

matrices. The COMBI algorithm [29] employs these estimates in the following procedure:

1) Let z = x

2) Apply both EFICA and WASOBI toz; denote the estimated sources assEF andsWA, respectively,

and the respective estimatedisrs asîsr
EF

and îsr
WA

.

3) Let E = mink îsr
EF

k andW = mink îsr
WA

k

4) If E < W ,

a) accept those signalssEF for which îsr
EF

k < W and redefinez as the rejected signals ofsEF

else,

b) accept those signalssWA for which îsr
WA

k < E and redefinez as the rejected signals ofsWA

5) If there are more than one rejected signal remaining, go to (2). Otherwise, if any, accept the rejected

signal.

Each of the two ISR expressions (1), (3) was derived under the assumption that all of the sources comply

with their respective model assumption. However, when the mixture consists of both non-Gaussian i.i.d. and

Gaussian time-structured sources, neither of the model assumptions can be satisfied by all sources. Strictly
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speaking, this mismatch may undermine the theoretical reliability of the output-based ISR estimates.

However, as already mentioned above, it has been empirically verified (and will be demonstrated in

simulation) that the ISR estimators usually remain reasonably accurate even when the respective model

assumptions are mildly violated and when the separation is not perfect.

Moreover, it has to be emphasized that exact ISR values are of little or no interest here, since only their

comparative relations are used in the selection process. We note in addition, that other empirical methods

for assessing the resulting ISRs could be considered, such as bootstrap resampling [20]. However, these

approaches usually involve a computationally extensive repeated resampling and separation scheme, and

may be more suited for i.i.d. sources than for time-structured sources. Thus, the possibility to exploit the

analytical expressions (1) and (3) for EFICA and WASOBI is rather appealing and serves as one of the

cornerstones of the proposed approach.

Still, a remaining major drawback of the COMBI algorithm described above is the following. Suppose

that one of the two algorithms (EFICA or WASOBI) can attain a nearly block-diagonal ISR matrix, namely

can well-separate the mixture intogroupsof sources, but still with poor separation within each group.

Then, subsequent application of the other algorithm to each group (separately) may be able to eventually

attain good separation of all of the sources. Unfortunately, COMBI would not be able to exploit such

potential “two-stage cooperation” between the two algorithms. This is because COMBI it is essentially

unaware of the group-separation ability of the first algorithm (because only the individual sources’isr-s

are accounted for).

We therefore propose (in the following section) an enhanced version of COMBI, aimed at applying a

more “systematic” approach, capable of accounting for such cases. A simple demonstration of the sources-

constellation in question, presenting both the drawback and its solution, would appear in Example 4 in

the Simulation Section.

IV. PROPOSED METHOD: MULTI-COMBI

A “multidimensional component” is a cluster of signal components that can together be well separated

from the other components in the mixture, yet are difficult to separate from one another [3], [1]. For

EFICA, only components that have (nearly) Gaussian distributions might form such a cluster, hence at

most one such cluster may exist. For WASOBI, any components sharing similar correlation structures (i.e.,

power spectra) are hardly separable from one another, but may be easily separated as a cluster, hence

several such clusters might co-exist.

Each cluster is characterized by the set of indices of the sources it contains, denotedI, I ⊂ {1, . . . , d}.

Using an estimate of the ISR matrix in (1) or in (3), thêisr of a clusterI (with respect to all the other
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sources) can be defined as

îsr(I) = αI
∑

k∈I,`/∈I

ÎSRk` (4)

whereαI is some normalization coefficient depending on the cluster’s cardinality (dimension)|I| and on

d. We propose to take

αI =
d− 1

|I|(d− |I|)

so thatisr(I) has the meaning ofd − 1 times the average of the entries in the sum in (4). This choice

is compatible with the basic definition ofisrk for I = {k}.

The proposed “MULTI-COMBI” algorithm works recursively with a stack of clustersS. In each step,

one of the clusters in the stack, that is not asingleton, i.e. does not have dimension1, is decomposed

into two or more smaller clusters, until all clusters are singletons. The algorithm can be summarized as

follows.

To initialize, let the stack of clustersS be comprised of a single-cluster containing the entire set,S := {x}.

1) Pick any cluster inS that is not a singleton, and denote this cluster asz (obviously,z = x in the

first step).

2) Apply both EFICA and WASOBI toz; obtain the separated signalssEF and sWA and the

corresponding estimated ISR matriceŝISR
EF

and ÎSR
WA

, estimated from the separated data using

(1) and (3).

3) Construct a setC of possible clustersI ⊂ {1, . . . , dim(z)}. For example, ifz contains three signals

then C = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Note thatC does not have to includeall possible

clusters - see the following subsection for a further discussion.

4) Based on the estimated ISR matrices, compute (using (4))îsr
EF

(I) and îsr
WA

(I) for eachI ∈ C.

Namely, in the same example, computêisr
EF

({1}), îsr
EF

({2}), îsr
EF

({3}), îsr
EF

({1, 2}), etc.

5) Let E := minI îsr
EF

(I) andW := minI îsr
WA

(I)

6) If E < W , pick up the set of “best” EFICA-separated clusters as follows:

I1 := argminI∈C îsr
EF

(I)

and then, fork = 1, 2, . . ., repeat the following:

Ik+1 := argminI∈C−{I;∃`∈[1,k];I`∩I6=∅}îsr
EF

(I)

until either:

îsr
EF

(Ik+1) > W
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or C − {I;∃` ∈ [1, k]; I` ∩ I 6= ∅} is empty. This procedure picks up the “best” (lowestisr)

EFICA-separated clusters one by one: At each step the best remaining cluster inC (among those

disjoint with the clusters picked up so far) is picked up (such a scheme is sometimes called a

greedyalgorithm). The procedure stops either when all clusters have been picked up, or when the

best remaining cluster is already worse than the best WASOBI-separated cluster. The value ofk

upon exit is denotedM .

Let J := {1, . . . , dim(z)} − ∪Ik. If J is not empty, letM := M + 1 andIM := J .

The new clusterss1, . . . , sM , are extracted fromsEF according to the partitioningI1, . . . IM .

else(for E > W ) extracts1, . . . , sM similarly from sWA using îsr
WA

.

7) updateS by substitutingz with s1, . . . , sM ,

S := (S − {z}) ∪ {s1, . . . , sM}

8) If all clusters inS are already singletons, stop. Otherwise return to 1).

A simplified demonstration of the progress of the algorithm can be found in the context of Example 4

in the Simulation Section.

A. Alternative (proposed) construction of the set C

Whend is not large, then the setC of the cluster candidates in step 3 can contain all2dim(z)−2 nontrivial

subsets of{1, . . . , dim(z)}. However, whend is large, sayd ≥ 20, computing isrs of all of these subsets

can be prohibitively slow. We therefore propose, in high-dimensional cases, consider a smaller set of

relevant cluster candidatesC. The setC can be constructed using any well-established clustering method

such as K-means, hierarchical clustering and many others (see, e.g., [24]).

For the EFICA-separated signalssEF , no clustering is actually required, asC can be simply determined

as the set of all singletons. This is because for EFICA we knowa priori that at most one cluster of non-

distinguishable (nearly Gaussian) components can exist. This cluster would be found as the remainder

setJ in step 5. Therefore, a clustering method is needed only to process the WASOBI-separated signals

sWA.

To apply such clustering, note that we may regard any estimated ISR matrix (ÎSR
WA

in our case) as

describing inverse distances between nodes on a graph, where the nodes are the source signals. A high

value in ÎSRk` means that sourcesk and ` are “close”, namely not well-separated, and should therefore

belong to the same cluster. Conversely, a loŵISRk` implies that sourcesk and` are well-separated, and

should therefore belong to different clusters. However, since we’re not interested in clustering a directed

graph (namely, we do not distinguish between̂ISRk` and ÎSR`k for the clustering), we can base the

clustering on a symmetrized version of theISR matrices,D
4
= ÎSR + ÎSR

T
.



10

ISRWA (not clustered)

1 2 3 4 5 6 7 8 9 1011121314151617181920

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

clustered

1017  71315  912161820  1  4  819  2  3  5  61114

10
17
 7

13
15
 9

12
16
18
20
 1
 4
 8

19
 2
 3
 5
 6

11
14

Fig. 1. Example of hierarchial clustering of a WASOBI ISR matrix (in gray-scale). Left: before, Right: after.

In this paper we suggest to construct the set of cluster candidatesC using ahierarchical clustering with

a single linking strategy[24]. Here, the setC is built recursively, so that in the beginning it contains all

singletons. At each step we look for the couple(k, `) for which Dk` obtains its maximum value, and then

create and add a new cluster toC, formed by the union of the most-recently-created cluster containing

signalk and the most-recently-created cluster containing signal`. In addition, we zero-out the(k, `) and

(`, k) entries inD, so as not to reuse the same couple in subsequent steps. The update ofC terminates

after dim(z)− 1 steps and contains2dim(z)− 2 entries at the end3. Note that the cardinality ofC would

usually be significantly smaller than the number of all possible clusters,2dim(z) − 2.

Once the setC of candidate clusters is obtained, the “leading clusters” can be selected, e.g, using a

greedy algorithm based on each cluster’ŝisr(I) (calculated using (4)). This selection is required on step

5.

The clustering scheme described above is anad hoc algorithm, which can be replaced by a more

sophisticated method in the future. However, in our simulations this scheme works well and seems more

accurate than the spectral clustering method advocated in [20] in a similar context.

We illustrate a typical clustering result of this clustering algorithm in Figure 1. On the left-hand side

we show the ISR matrix for20 sources in gray-scale colors, where lighter colors denote low ISR (good

separation) and darker colors denote high ISR (poor separation). The resulting re-ordering and partition

into clusters is clearly observed on the right-hand side.

3It is because in each update, the number of the clusters available for further fusion decreases by one.
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B. Cluster issues

We note in passing, that under poor separation conditions (e.g., short data lengthN ), situations

containing poorly-distinguishable (overlapping) clustering might also occur. Indeed, theoretically (and

asymptotically), for the EFICA model there can only be one cluster of inseparable sources, namely a

cluster of Gaussian sources. For WASOBI, there can be several clusters that group sources with identical

spectra (different between clusters). Therefore, strictly speaking, the residual clusters produced by each

method separately should not overlap. However, in reality (especially under non-asymptotic conditions)

this might not hold true in some situations, e.g,, if there are some similarities in spectra between sources

in different clusters of WASOBI, or if there are sources which are ”roughly” Gaussian (for EFICA). In

such cases the clusters might not be strictly disjoint. However, the algorithm relies on some thresholding

of the ISR, which would eventually yield some (possibly inaccurate) disjoint clustering, hopefully (but

not necessarily) a “good” one. Nevertheless, under the specified model assumptions, as the observation

lengthN increases, the clusters are guaranteed to become well-distinguishable.

V. SIMULATION RESULTS

We conducted a series of simulation experiments aimed at comparative evaluation of the proposed

MULTI-COMBI approach, as well as at verifying the validity of the intermediate ISR estimates.

As discussed earlier, the analytic ISR expressions were obtained under their respective “nominal”

homogeneous model assumptions, which are deliberately breached in our experiments’ setup. Moreover,

when using these expressions, some true (unknown) quantities are replaced by their empirical estimates

from the output signals, which might not be well-separated. It is therefore essential to verify (at least

empirically) that the output-based ISR estimates, on which the entire MULTI-COMBI approach is based,

are indeed valid.

Thus, the first three simulation examples in this section demonstrate the remarkable agreement (under

mild deviations from the model assumptions) between the empirical performance of EFICA and WASOBI

and their theoretical predictions obtained using (1) and (3) (with empirical quantities). In addition, we

compare the resulting MULTI-COMBI and COMBI performance to some competing algorithms.

The fourth example illustrates the advantages of MULTI-COMBI with respect to the less sophisticated

COMBI in the presence of clusters. The last three examples challenge the robustness of all algorithms,

demonstrating the maintained superiority of MULTI-COMBI in larger-scale problems (containing several

large clusters) and in the presence of additive noise.
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Example 1 - Figure 2

In the first experiment we consider the separation of five colored non-Gaussian sources versus a

parameterized variation of their spectral diversity.N = 1000 samples of each source were generated

by filtering statistically independent random binary (BPSK) sequences using all-pole filters. For each

k = 1, 2, . . . , 5, thek-th filter was constructed ofk poles, located at allk roots of the real-valued parameter

−ρ. In other words, the filters’ autoregression coefficients were[1, ρ], [1, 0, ρ], [1, 0, 0, ρ], [1, 0, 0, 0, ρ] and

[1, 0, 0, 0, 0, ρ], for 0 ≤ ρ < 1.

For small values ofρ, the sources are strongly non-Gaussian, having a weak (and rather similar)

temporal correlation structure, so EFICA should be superior to WASOBI. Conversely, asρ approaches

1, the sources can be equivalently reproduced with effectively very long FIR filters, and therefore (by

the central limit theorem) have nearly Gaussian marginal distributions, yet with strong different temporal

correlation structures, so WASOBI should clearly outperform EFICA.

Since the obtained ISR values in each experiment were roughly similar for all of the sources, we merely

display the performance in terms of a single, average ISR (inverted, for convenience), averaged over all

sources and over all trials. In each trial, all elements of the mixing matrix were redrawn independently

from a standard Gaussian distribution.

The theoretically-predicted ISRs were obtained empirically in each trial, by substituting the unknown

statistical properties in (1) and (3) with their empirically-obtained values from the separated sources.

These ISR values were also averaged over all sources and over all trials, and their inverted values are

displayed versus the spectral-shape parameterρ.

We note the remarkable agreement of the performance of both EFICA and WASOBI with their

theoretical prediction over the entire range ofρ, except for the extreme casesρ ≈ 0 and ρ ≈ 1, where

the deviation is more significant. In the higher-region ofρ, the predicted ISR of EFICA is slightly over-

optimistic, i.e. the inverted mean predicted ISR is slightly higher than the actual inverted ISR (yet the

relative order is evidently maintained).

The performance of COMBI and MULTI-COMBI is compared in this and in subsequent experiments

with the other following algorithms: JADETD [23] with parameters 0:5, JCC [12] with parametersp = 5

andτ = [2, 3, 4, 5, 6], and Thin ICA (TICA, [6]) with parameters(d1, d2, d3) = (5, 0, 5).

Example 2 - Figure 3

In this experiment we fed the all-pole filters described in the previous example with (super-Gaussian)

i.i.d. samples taken from a Generalized Gaussian distribution with parameterα 4. For easy reference, the
4This distribution has a density proportional to exp(−β|x|α), whereα > 0 controls the shape of the distribution andβ > 0 controls the

variance. See e.g. [18] for more details.
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Fig. 2. Inverted average ISR achieved in separation of five AR signals obtained by passing binary (BPSK) i.i.d. sequences of length

N = 1000 through all-pole filters with autoregression coefficients[1, ρ], [1, 0, ρ], [1, 0, 0, ρ], [1, 0, 0, 0, ρ], and [1, 0, 0, 0, 0, ρ], respectively,

and the theoretically predicted ISR (1) and (3), estimated using the separated signals, versus varyingρ. Each simulation point is an average

of 100 trials.

distribution is denoted GG(α). Diagram (a) in Figure 3 shows the result forα = 0.5 as a function of

parameterρ and diagram (b) the result forρ = 0.5 and varyingα. Each simulation point is an average of

100 trials.

The general behavior in diagram (a) is similar to that observed in the previous example, with the

difference that the performance of all algorithms is statistically less stable than in the first experiment,

probably due to the long tail distribution of the data.

Diagram (b) of Figure 3 shows that forα below 0.5, the non-Gaussian character of the data is the

dominant key-property for separation and, therefore, EFICA is more accurate than WASOBI. Forα higher

than0.5, WASOBI is more accurate since the temporal correlation structure becomes the dominant key-

property for separation. As in the previous examples, both COMBI and MULTI-COMBI are able to

effectively combine the advantages of EFICA and WASOBI and, at the same time, outperform the other

competing algorithms.
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Example 3 - Figure 4

This experiment demonstrates the advantage of COMBI and MULTI-COMBI in scenarios where neither

EFICA nor WASOBI are able to separate all signals, yet COMBI, MULTI-COMBI, JADETD [23], TICA

[6], JCC [12] and Hyv̈arinen’s algorithm “UNIFIED” [15] can. Moreover, we demonstrate how, due to

its ability to account for clusters, MULTI-COMBI can outperform COMBI and almost all of the other

competitors. We considered four AR sources. The first source was generated by filtering an independent

BPSK sequence using an all-pole filter with coefficients[1, ρ]. The second source was generated by feeding

the same filter with Gaussian iid samples. The third and fourth sources were generated in the same way

but the coefficients of the filter were[1,−ρ]. Obviously, the first and second pairs are each non-separable

by WASOBI, while the second and fourth sources are non-separable by EFICA.

COMBI first separates the two non-Gaussian sources using EFICA and subsequently separates the two

remaining sources with WASOBI. Note, however, that for large values ofρ the initial separation of the

non-Gaussian sources may be rather poor, since the increased effective length of the filters renders the

marginal distributions of their outputs nearly Gaussian. Significantly better separation is then achieved

by MULTI-COMBI, which is able to exploit the excellent ability of WASOBI to first separate the pair

(cluster) of components with one spectral density from the pair (cluster) with the other spectrum, leaving

for EFICA the remaining task of separating each pair internally. For example, in one trial withρ = 0.6

we got the following ISR matrices (in natural ratio numbers, not in dB)

ÎSR
WA

=


− 0.5234 0.0004 0.0003

0.5716 − 0.0004 0.0004

0.0004 0.0004 − 0.0389

0.0003 0.0003 0.0269 −



ÎSR
EF

=


− 0.0013 0.0013 0.0008

0.0022 − 0.1272 0.0019

0.0023 0.1281 − 0.0019

0.0007 0.0009 0.0009 −


From these ISR matrices we can see that the clusters of components{1, 2} and {3, 4} in WASOBI are

better separated from one another (having lower residual presence of each in other) than clusters{1},

{2, 3} and{4} in the EFICA result. More specifically,

îsr
WA

({1, 2}) ≈ îsr
WA

({3, 4}) ≈ 0.0004

and

îsr
EF

({2, 3}) ≈ 0.0021 .
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In this situation, WASOBI cannot accurately resolve individual components but it separates the two

two-dimensional clusters better than EFICA. Contrary to COMBI, MULTI-COMBI detects this fact and

correctly chooses WASOBI for the initial separation, yielding improved performance.

Note that MULTI-COMBI outperforms almost all of the competitors for almost all values ofρ, with one

significant exception: Hyv̈arinen’s algorithm outperforms MULTI-COMBI (in all four experiments) forρ

above0.6−0.7. This means that there is still room from improvement, as MULTI-COMBI does not (and is

not claimed to) inherit the optimality of its building blocks EFICA and WASOBI. We note in passing, that

the implementation of Hyv̈arinen’s algorithm that is available so far, is inapplicable to separation of AR

processes of higher orders and to separation of sources of an uknown type (supergaussian/subgaussian),

because each type requires a different built-in nonlinear function. (In this example, we have used “pow3”

to achieve a good performance.)
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Fig. 3. Inverted average ISR achieved in separation of five AR signals obtained by passing white i.i.d. GG(α) distributed sequences of length

N = 1000 through all-pole filters with autoregression coefficients[1, ρ], [1, 0, ρ], [1, 0, 0, ρ], [1, 0, 0, 0, ρ], and [1, 0, 0, 0, 0, ρ], respectively,

and the theoretically predicted ISR (1) and (3), estimated using the separated signals. Diagram (a) shows the result for a fixedα = 0.5

versus varyingρ, diagram (b) is forρ = 0.5 versus varyingα.
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Fig. 4. Inverted average ISR achieved in separation of four AR signals obtained by passing BPSK, Gaussian, BPSK and Gaussian i.i.d.

sequences of lengthN = 1000 through all-pole filters whose autoregression coefficients were[1, ρ], [1, ρ], [1,−ρ] and [1,−ρ], respectively.

Each simulation point is an average of100 trials.

Example 4 - Figure 5

In this experiment we mixed (and separated)20 AR sources comprised of four groups of five sources

each. Each of the five groups was generated with the same set of filters used in the first experiment,

with ρ = 0.6. The only difference between the groups was the distribution of the i.i.d. “driving noise”,

which was Gaussian for the first group, BPSK for the second, Laplace (=GG(1)) for the third and Uniform

(=lim GG(α) for α →∞) for the fourth. Thus, for EFICA the first group of five Gaussian signals comprise

a non-separable cluster, whereas for WASOBI there are five different clusters, each comprised of four

signals with similar spectra (and different marginal distributions).

The results are shown in terms of the inverted average ISR for all20 sources. Across-the-board
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superiority of MULTI-COMBI is clearly evident.

Example 5 - Figure 6

In this experiment the scenario of the previous experiment is repeated with the exception that now the

observations are contaminated by additive white Gaussian noise (AWGN). The noises’ variances were set

so as to maintain input signal to noise ratio (SNR) of0dB for all sources. The mixing matrices were taken

at random with independent Gaussian distributed elements, normalized such that each row ofA−1 had unit

norm [17], and censored so that their condition numbers lie in the interval [10,100]. The results are shown

in terms of the inverted averaged interference+noise to signal ratio (INSR), and are also compared to the

empirical performance of an “oracle” minimum mean-square error (MMSE) separator, which uses the

known mixing matrix and noise variance. It is evident that the superior performances of MULTI-COMBI

with these sources is maintained also in the presence of AWGN.

Example 6 - Figure 7

In this experiment20 white Gaussian (unresolvable) sources were added to the scenario considered in

Example 5, yielding40 mixtures of40 sources, with only20 being separable from each other (as well

as from the other20). We display the results for the separable sources only. Again, MULTI-COMBI is

clearly shown to outperform the other algorithms.

Computational aspects

The computational load of each algorithm was compared when operating on the large-scale mixtures

of 20 sources (example 5) and of40 sources (example 7). Our hierarchial clustering algorithm was used

in MULTI-COMBI, as described in Section IV. The average running times of each algorithm with the

parameters specified in Example 1, and running on the same PC (P4 3GHz, 2GB RAM, Windows XP)

in Matlabr version 7.0/R14 are summarized in Table I.

TABLE I

RUNNING TIMES (IN [S]) OF DIFFERENT SEPARATION ALGORITHMS

Algorithm 20 sources (ex. 5) 40 sources (ex. 7)

EFICA 2.5 6.7

WASOBI 0.5 2.1

MULTI-COMBI 5.2 22.6

JADETD 2.6 434.7

TICA 22.6 378.2

JCC 22.4 712.7
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Fig. 5. Inverted average isr (for each component separately) achieved in separation of 20 AR sources of lengthN = 5000, driven by

i.i.d. sequences of Gaussian, BPSK, Laplace and Uniform distributions passing through all-pole filters with autoregression coefficients[1, ρ],

[1, 0, ρ], [1, 0, 0, ρ], [1, 0, 0, 0, ρ] and [1, 0, 0, 0, 0, ρ] for ρ = 0.6. Each simulation point is an average of100 trials.

VI. CONCLUSIONS

We have proposed a novel ICA algorithm5 that effectively combines the two powerful ICA methods

EFICA and WASOBI, thereby allowing separation of mixtures of sources that would be otherwise poorly

separated by either one. Computer simulations show good performance of the algorithm compared to

competing algorithms, such as JADETD, JCC and ThinICA, both in terms of separation quality and in

terms of computational efficiency.
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